

Vulture: Cross-Device Web Experience with Fine-Grained

Graphical User Interface Distribution

Seonghoon Park†, Jeho Lee†, Yonghun Choi‡, and Hojung Cha†*
†Department of Computer Science, Yonsei University, Seoul, Republic of Korea

‡Korea Institute of Science and Technology, Seoul, Republic of Korea

{park.s, jeholee}@yonsei.ac.kr, y.choi@kist.re.kr, hjcha@yonsei.ac.kr

Abstract—We propose a cross-device web solution, called
Vulture, which distributes graphical user interface (GUI) elements
of apps across multiple devices without requiring modifications of
web apps or browsers. Several challenges should be resolved to
achieve the goals. First, the peer–server configuration should be
efficiently established to distribute web resources in cross-device
web environments. Vulture exploits an in-browser virtual proxy
that runs the web server’s functionality in web browsers using a
virtual HTTP scheme and a relevant API. Second, the functional
consistency of web apps must be ensured in GUI-distributed
environments. Vulture solves this challenge by providing a single-
browser illusion with a two-tier document object models (DOM)
architecture, which handles view state changes and user input
seamlessly in cross-device environments. We implemented
Vulture and extensively evaluated the system under various
combinations of operating platforms, devices, and network
capabilities while running 50 real web apps. The experiment
results show that the proposed scheme provides functionally
consistent cross-device web experiences by allowing fine-grained
GUI distribution. We also confirmed that the in-browser virtual
proxy reduces the GUI distribution time and the view change
reproduction time by averages of 38.47% and 20.46%,
respectively.

Index Terms—cross-device experience, graphical user
interface distribution, web applications, mobile web.

I. INTRODUCTION

With the proliferation of diverse computing devices, such as
smartphones, tablets, smart televisions (TVs), and others, many
of these devices are commonly owned by individuals. In general,
an application running on a device is often bound to operate on
that single device. This limits the potential of exploiting multi-
device environments for an enriched user experience. If the
graphical user interface (GUI) of an application were allowed to
be distributed to other devices as demanded by the user, the
cross-device experience [1] in multi-device environments would
be more versatile than what is found today. For instance, when
a user is taking a note using the Google Keep application on a
laptop computer, the user may wish to move a canvas-related
GUI element to a tablet computer, intending to draw figures
precisely with a stylus pen. Enabling this kind of functionality
distribution in the application requires users to migrate a specific
GUI component to a target device.

Unfortunately, most of the cross-device solutions developed
thus far simply share the entire screen among the devices or cast
specific types of GUI components without actually distributing
the GUI elements to the devices at a fine-grained level. Screen
mirroring (or screen sharing) solutions, such as VNC [2],
AnyDesk [3], and Chrome Remote Desktop [4], mirror the entire
screen of a host device to a target device. Chromecast [5] simply
casts the video streams from a mobile device to a big screen,
such as a smart TV. In short, existing solutions are not able to

support the GUI distribution of an application at the component
level, hence resulting in insufficient support for cross-device
experiences. Recently, efforts have been made to provide
sophisticated cross-device experiences beyond simple
mirroring, especially for popular web apps such as YouTube and
Google Docs. The approach, however, requires considerable
effort to reauthor the original application to provide the
functionality. Furthermore, this cross-device functionality is
limited because the distribution of GUI components is preset by
developers.

Research has been conducted to exploit the potential of a
cross-device experience, especially one capable of providing
fine-grained GUI distribution without reauthoring, for both
native apps and web apps. In the case of native apps [6]–[8],
cross-device GUI distribution is provided for devices running a
homogeneous operating environment and, thus, is not applicable
to heterogeneous platforms. Unlike native apps, web apps
running on web browsers operate in a platform-independent
fashion. Therefore, cross-device solutions based on web apps
provide versatility on different platforms, require fewer efforts
by developers, and ensure practicality because the widely
available web apps are equivalent to native apps. One recent
attempt was XDBrowser [9], which distributes the GUI of web
apps to devices without reauthoring. The work primarily focused
on the human–computer interaction (HCI) issue of distributing
GUIs for the best possible views across multiple devices.
However, enabling techniques for cross-device operations, such
as the distribution, synchronization, and authorization of GUI
elements, were not discussed. To provide a cross-device web
experience, many of the practical issues in distributing GUIs
across multiple devices, such as access rights handling, view
state updates, and user input synchronization, should be solved.
To date, no work has delivered cross-device web functionality
that is fully functional without reauthoring applications.

Two key challenges exist in providing the desired cross-
device web functionalities. The first challenge is to develop an
efficient and effective peer–server scheme to distribute web
resources. We define a host as a primary device on which a user
selects the GUI elements to distribute to other devices called
peers. Peers need web resources to render the GUI elements
transmitted from a host. Peers often fail to fetch web resources
directly from the original web servers because they are
constrained by access rights. Proxy servers can be exploited to
solve these issues, but privacy and cost issues exist. The second
challenge is to ensure the functional consistency of web apps in
GUI-distributed environments. The JavaScript runtimes in the
browsers handle the core logic of web apps and interact with
document object models (DOMs) that represent GUIs. The

* Corresponding author

interactions assume single-browser environments; thus, web
browsers cannot guarantee the validity of interactions in cross-
device environments. From the users’ point of view, user inputs
from multiple devices must be handled properly, and GUI states
should be synchronized among the devices.

In this paper, we propose Vulture, a platform that readily
provides cross-device experiences in web environments.
Vulture provides novel solutions to the challenges above. To
orchestrate a peer–server configuration, Vulture introduces an
in-browser virtual proxy that efficiently handles the distribution
of web resources for peers. The in-browser virtual proxy brings
proxy servers into web browsers; thus, the approach mitigates
the privacy and cost issues of proxy servers. Unfortunately,
current web browsers do not provide hypertext transfer protocol
(HTTP) sockets to web apps, making it difficult to implement
the virtual proxy in web platforms. To solve this issue, we
propose a cross-device virtual HTTP scheme and a relevant API
for the virtual HTTP. This scheme practically empowers web
browsers to run web servers. To ensure functional consistency
for GUI-distributed web apps, Vulture provides a mechanism for
single-browser illusions based on a two-tier DOM architecture,
which consists of original and cloned DOMs. The original DOM
is located in a host to handle the core logic of web apps, while
the cloned DOM is located both on the host and peers to render
the GUI elements. With this scheme, the host handles the
execution of JavaScript and user inputs in their entirety. The
peers simply receive the resulting view states from the host and
forward the user inputs to the host.

To the best of our knowledge, Vulture is the first approach
allowing for a mature level of cross-device experience in web
environments without having to reauthor applications or modify
browsers. The key contributions of our work are as follows:
 Vulture introduces an in-browser virtual proxy to efficiently

and effectively relay web resources from hosts to peers. To
enable web servers to be executed in web browsers, we
propose a cross-device virtual HTTP scheme and a relevant
developer API.

 To ensure the functional consistency of GUI-distributed web
apps, Vulture provides single-browser illusions by
synchronizing view states and user inputs among multiple
devices while allowing users to distribute GUIs at a fine-
grained level.

 We validate the proposed scheme by demonstrating fully
functional cross-device web experiences across a diverse set
of heterogeneous devices operating on various real web
apps.

II. CROSS-DEVICE WEB EXPERIENCE

We describe the practicality of the cross-device web
experience provided by multiple devices running a distributed
GUI in a web app. We classify the use case into four categories
and describe the scenarios in detail. Fig. 1 illustrates the use case
for each category.

A. Improving Visual Experience

When a web app contains GUI elements whose functionality
can be distributed and run on multiple devices simultaneously,
the user experience will be greatly enhanced or even maximized.
For example, when chatting with people while watching a video
on Twitch using a smartphone, a user may want to move the
video-related GUI elements to a smart TV, which provides a

large screen, while continuing to chat with the smartphone
(C1.1)1. This cross-device web scenario will improve the user
experience in the given situation. Another example is when
searching for a place with the OpenStreetMap on a smartphone,
the visible portion of the map on the smartphone screen is
reduced because the search interface and virtual keyboard are
put in the foreground (C1.2). If the map-related GUI elements
are transmitted to another device that has a large screen, such as
a tablet computer, the user experience would be much improved
by viewing the map on the tablet while searching for places with
the smartphone.

B. Hiding Personal Data

With the cross-device web technique, personal information
can be protected from public view when web apps are used in
public. For example, if a user logs on to Facebook during an
online lecture presentation, that person’s email addresses or
mobile phone numbers are exposed to the audience by default
(C2.1). In such a case, if the input and GUI elements related to
the login could be passed to the user’s personal smartphone, the
private information would be hidden from the public view.
Similarly, when a user wishes to share a specific photo on
Google Photos on a public screen, other photos might
accidentally be revealed (C2.2). This privacy problem can be
solved by hiding personal photos on a private device and
selectively displaying the intended photos on a public screen.

C. Enhancing User Interaction

The cross-device web technique resolves the inconvenience
caused by the constrained input interface of a single device,
providing convenient and enhanced user interactions. For
example, take the scenario where a user is taking notes using
Google Keep on a laptop during lectures or meetings (C3.1).
When the user needs to draw a picture or take handwritten notes
on the laptop, the mouse or trackpad input is probably not an
optimal interface for the task. If the GUI elements of Google
Keep can be passed to another device equipped with an input
interface better suited for handwriting, such as a tablet computer
with a stylus, the user will be provided with various input
options for enhanced interactions with the application at hand.
For another example, consider watching a YouTube video on a
smart TV; it is difficult to finely handle the mouse pointer on the
TV using a remote control to control the playback or search for

(a) Improving Visual Experience (b) Hiding personal data

(c) Enhancing user interaction (d) Supporting collaborative work

Fig. 1. Cross-device web experiences.

1 We use the Cx.y notation to refer to each scenario in Sections II and VII.

Crop & Zoom

Crop & Move

Crop & Move

Public view
Private

Crop & Copy

Interaction
Crop & Share

videos (C3.2). If a smart TV could pass the YouTube control bar
to a smartphone, then the user could easily handle the video on
the TV with the smartphone’s handy touch interface.

D. Supporting Collaborative Work

The functionality of web apps can be extended to support
collaborative work by sharing the selected GUIs of a web app
with other people’s mobile devices. Suppose that a user is giving
a presentation using Google Presentation with a laptop
connected to a projector in a conference room (C4.1). If the
presentation slides could be shared on the participants’ devices,
the slides would be directly accessed from the devices without
the participants having to prepare hard copies. In addition,
assume a scenario in which a user is working at home and coding
through CodePen (C4.2). If the code-writing GUI and GUI
displaying the results were shared with other coworkers in the
workplace, the reviewing and revising process of the code
development would be efficiently executed in a group.

III. VULTURE OVERVIEW

Motivated by Section II, we propose Vulture, a system for
cross-device web experiences without requiring modifications
of web apps or browsers. We discuss the challenges and describe
the architecture of our solution.

A. Challenges

Challenge 1. Orchestrating Peer–Server Configuration.
To support the fine-grained GUI distribution of web apps, peers
should be able to acquire web resources of various kinds, such
as HTML documents, CSS documents, images, and fonts. One
technical challenge is designing an efficient and effective peer–
server configuration for resource distribution. There are two
possible ways for peers to obtain the resources: (1) sending
HTTP requests directly to original web servers and (2)
exploiting proxy servers. Fig. 2(a) illustrates a naïve scheme in
which peers directly send HTTP requests to original servers. A
host is the primary device where a user selects the GUI elements,
and peers are the secondary devices displaying the distributed
GUI elements. This approach is straightforward and easy to
implement but poses an access right issue. For example, many
web apps identify users or clients using various methods, such
as HTTP sessions [10], HTTP cookies [11], and tokens [12]. If
a peer does not have access rights to a server, the peer cannot
retrieve the web resources. Another approach for distributing
web resources from hosts to peers is to exploit proxy servers, as
illustrated in Fig. 2(b). While a host forwards web resources to
a proxy server, peers fetch the resources from the proxy instead
of the original server. Peers only need access rights to the proxy
server. However, this approach has several problems. The proxy
servers may encounter privacy and security problems because
the private data of users are located outside of the users’ devices.

Also, cost and maintenance issues exist because the proxy
servers should accommodate all the traffic caused by users. To
summarize, both approaches have inherent problems, and a new
approach is required to handle the efficient distribution of web
resources to peers.

Challenge 2. Ensuring Functional Consistency. Web apps
operate based on interactions between JavaScript runtimes and
browser engines. JavaScript codes, which define the logic of
web apps, run in JavaScript runtimes. Browser engines handle
the various functionalities provided by browsers, including
rendering GUIs, networking, and receiving user inputs. In
particular, browser engines provide DOM API dealing with
GUIs for web apps. With the API, JavaScript runtimes detect
user inputs and changes in view states, handle the inputs, and
update view states. DOM-based GUI management operates
under the assumption that web apps run in single-browser
environments. In cross-device environments, the operation of
DOM-based GUI management cannot be guaranteed. Thus, the
GUI-distributed web apps themselves should handle user inputs
from multiple devices and synchronize view states across the
devices. The view state in a web app continuously changes at
runtime; subsequently, the GUIs should correctly reflect the
update on the display even when the GUI elements are
transferred to another device. Furthermore, a web app
sometimes involves changes in the URL when switching to the
new view states [13], leading to reloading web resources and
initializing JavaScript codes. Also, the user’s input leads to
executing the web app’s JavaScript, which changes the code
flow, the values of the data structures, and the internal state of
the web app. Thus, the cross-device technique should properly
maintain the internal states of the web apps and servers by
synchronizing the user input between the devices.

B. Vulture Overview

The overall architecture of Vulture is illustrated in Fig. 3.
The architecture is designed to support multiple peers, enabling
a one-to-many distribution of GUI elements, but for brevity, we
describe Vulture based on a single-peer configuration. The
workflow of Vulture consists of two phases: the GUI
distribution phase and the usage phase. In the GUI distribution
phase, a user selects GUI elements on the host to distribute to
the peer, and the DOM sender transmits the selected DOM to
the peer. Transmitting the web resources to the peer is not trivial
because the peer–server configuration should be well
orchestrated. Vulture addresses this challenge by introducing the
in-browser virtual proxy and a relevant API for virtual proxy,
which are discussed in Section IV. During the usage phase,

(a) Accessing original web servers (b) Exploiting a proxy server
Fig. 2. Peer–server configurations.

Fig. 3. The Vulture architecture.

Web servers

Host Peers

Request &

response

Request

denied

Web app

Host Peers

Request &

response

Request &

response

Web servers Proxy

Web app

Web application with Vulture

Web browser (Host)

Resources Render tree

CSS

Others

Vulture module

Virtual proxy

Virtual socket (Vulture.js)

selected

Web browsers (Peers)

Vulture peer app

Render tree

Resources
HTML CSS Others

Virtual network adapter

(Vulture.js)

DOM sender

DOM

receiver

Cloned DOM

Original DOM

JS

HTML

Network

handler

Two-tier

DOM

Cloned

DOM

where a user uses the GUI-distributed web app, the functional
consistency of the web app should be ensured. Vulture addresses
this challenge by providing the single-browser illusion with the
two-tier DOM architecture discussed in Section V.

Vulture’s actual GUI distribution is based on the in-browser
virtual proxy and the two-tier DOM architecture. When a web
app is loaded on the host, Vulture forwards the web resources of
the web app to the virtual proxy server a priori and generates a
cloned DOM on the host. When a user selects GUI elements to
be distributed, the DOM sender converts the selected part of the
cloned DOM into an HTML document, removes all the script
tags from the document for the single-browser illusion, and
sends the document to the peer. Upon receiving the document,
the DOM receiver on the peer reconstructs the cloned DOM.
Then, the peer parses the HTML document containing various
URLs for web resources. During the parsing, the network
handler blocks the network requests and sends the requests to
the virtual proxy on the host. The virtual proxy sends the web
resources to the peer by responding to the requests.

IV. IN-BROWSER VIRTUAL PROXY

We propose an in-browser virtual proxy scheme to solve the
peer–server configuration issue discussed in Section III.A.

A. Necessity and Problem

Proxy servers—or remote proxies—are typically located on
server computers or cloud servers outside of users’ devices. We
define an in-browser virtual proxy as a proxy server running
inside users’ browsers, hence technically bringing remote
proxies into the browsers. This scheme resolves the access rights
problem of peers, overcoming the privacy and cost issues of
remote proxies. Since the virtual proxy runs in web browsers,
private data are never exposed; thus, there is no need to maintain
external servers to run remote proxies. In addition, the virtual
proxy-based configuration has a performance advantage in
terms of the round-trip time (RTT). Although an in-browser
virtual proxy running in web browsers has many practical
advantages, its development is not trivial. Unfortunately, web
browsers cannot run server programs written in JavaScript
because browsers do not provide the relevant APIs, such as the
HTTP socket, which is an essential functionality for servers.
Several attempts have been made to provide HTTP socket
functionality—without modifying web browsers—to web apps,
but they still lack support for the desired cross-device web
experiences. Browsix [14] enables web browsers to run Node.js
[15] server programs by developing a JavaScript-only operating
system (OS) running in web browsers. The HTTP socket
provided by the Browsix OS is limited to a single browser tab;
that is, it is not possible to send HTTP requests to browsers on
other devices. WebContainer [16] supports HTTP
communications between different browser tabs, but the tabs
must be in the same browser. To deliver web resources to other
devices, the in-browser virtual proxy should be able to receive
HTTP requests from other devices and send responses back to
them.

B. Cross-Device Virtual HTTP

We propose a cross-device virtual HTTP scheme to solve the
technical problem of developing an in-browser virtual proxy;
this scheme allows web browsers on different devices to
exchange HTTP requests and responses. The design of the cross-

device virtual HTTP addresses two issues: (1) how to send
HTTP messages to other devices with no HTTP sockets and (2)
how to identify destinations where the messages should go.

The cross-device virtual HTTP cannot directly utilize the
TCP/IP connections for HTTP communications because the
sockets are not available in web apps. For the virtual HTTP
connections, we employ WebRTC, which is practically the only
way for web apps to communicate with each other. Before
exchanging virtual HTTP requests and responses, devices first
establish WebRTC connections. Virtual HTTP requests are then
delivered via WebRTC data channels, and responses to the
requests are sent via the same data channels. Meanwhile, domain
names are used to identify the destinations of HTTP requests.
The domain name system (DNS) translates domain names into
Internet Protocol (IP) addresses. However, virtual HTTP cannot
use domain names or IP addresses because the messages are sent
via WebRTC. Instead, we introduce virtual domain names and a
virtual DNS (vDNS) to identify those destinations under the
virtual HTTP network. Virtual domain names point to specific
devices in the same virtual HTTP network. The vDNS converts
virtual domain names into designated WebRTC data channels.
Fig. 4 illustrates the architecture of the in-browser virtual proxy
and shows the flow of exchanging virtual HTTP requests and
responses, here assuming that an HTML document has a <img
src=‘vulture-host.com/a.jpg’> tag. When a web app sends a
virtual HTTP request, the vDNS returns a WebRTC data
channel regarding a virtual domain name. The web app then
sends the request via the data channel.

C. Vulture.js: API for Virtual HTTP

To provide the cross-device virtual HTTP, we propose a new
JavaScript API called Vulture.js, which provides API functions
and syntax similar to Node.js programs. The main functionality
of Vulture.js is to offer API functions for virtual HTTP sockets.
The functions allow servers to receive virtual HTTP requests
and send responses to the requests. Vulture.js also provides
client-side API functions for web apps to use virtual HTTP and
recognize destination servers when sending requests. TABLE I
lists the API functions of Vulture.js. Fig. 5(a) shows a sample
virtual server program written with the functions. The program
opens a virtual HTTP socket with the createServer() and listen()
functions. The listen() function designates the virtual domain
name of the virtual server. To receive virtual HTTP requests, the
server is connected to a virtual HTTP network with the
connectToVirtualNetwork() function. Fig. 5(b) describes a
sample web app code that sends a virtual HTTP request. When
connecting to the virtual HTTP network, the web app saves the
virtual domain name of the virtual server. All the HTTP requests
to the virtual domain name are then sent to the virtual server.
Vulture.js uses Service Worker API [17] to provide these
functionalities, which intercept and control network requests.

Fig. 4. The in-browser virtual proxy with the cross-device virtual HTTP.

Web app vDNS
(1*) ‘vulture-host.com’

(2*) WebRTC channel

Web browser (Peer)

Virtual

proxy

(3*) Request & response (Virtual HTTP)

Web browser (Host)

Web app
forward

DNS

Web

server

(1) Domain name

(2) IP address

(3) Request

& response

V. TWO-TIER DOM ARCHITECTURE

We propose a two-tier DOM architecture to handle the
functional consistency issue discussed in Section III.A.

A. Two-Tier DOM with Cloning

The two-tier DOM architecture is designed to provide a
single-browser illusion to GUI-distributed web apps. As
described earlier, JavaScript runtime executes the core logic of
web apps and uses DOM to handle GUIs. The two-tier DOM
architecture aims to maintain the interactions between the
JavaScript runtime and DOM during the cross-device web
experience. The two-tier architecture clones the DOM of web
apps using two types of DOMs—original DOM and cloned
DOM. The architecture allows the JavaScript runtime in the host
to interact with the original DOM, while distributed GUIs are
handled with the cloned DOM in each peer. The original DOM
is the same as the DOM running in a single browser. In this way,
the JavaScript runtime on the host cannot tell whether the GUIs
of the web app are distributed or not. Consequently, the two-tier
DOM architecture executes all the core operations of web apps
on the host, such as running JavaScript codes and handling user
inputs. The peer updates the screen content by receiving the
view state from the host (i.e., the view state reproduction). The
peer also forwards all user inputs to the host (i.e., user input
delegation). Sections V.B and V.C detail the view state
reproduction and user input delegation, respectively.

B. View State Reproduction

The view state changes because of the execution of
JavaScript or URL transitions. When the execution of JavaScript
on the host changes the view state corresponding to the GUI
elements transferred to the peer, the host detects the change and
sends the changed DOM as an HTML segment to the peer.
When a URL transition occurs and the view state is altered, the
host checks whether the loaded page is in the same application
context as the existing page. The criterion for this check is
whether the GUI elements on the peer can be found in the DOM
tree of the new page. From the peer’s perspective, the URL
transition is merely a change in the view state of the GUI
elements. Subsequently, the peer obtains the changed DOM and
updates the view state. Meanwhile, the media elements

continuously draw frames on display without making changes in
the DOM tree; thus, the media elements cannot be synchronized
by tracking the view state. To resolve this issue, the host streams
the media to the peer. The two-tier DOM architecture intercepts
the stream on the host’s web app, transmits the stream to the
peer, and connects the stream to the media element in the peer.

C. User Input Delegation

The two-tier DOM architecture handles user inputs across
devices by delegating all user inputs from the peer to the host.
Because all user inputs occurring on the peer are delivered to the
host and centrally processed there, the architecture effectively
prevents discrepancies in the operation flow because of
duplicated code execution. Note that the architecture
synchronizes the processing of user inputs, even in multi-peer
configurations, because all user inputs are delegated to the host.
To address the issue of input heterogeneity, the host translates
the input event received from the peer into an event that plays
the same role on the host. Also, to deal with the situations where
the input event contains the coordinates on the screen or the
screen sizes of the host and the peer are different, we designed
the “User Input Handler” to convert the coordinates from the
peer to the corresponding location on the host’s screen. With this
technique, the two-tier DOM architecture provides a seamless
experience in user input between heterogeneous devices.

VI. VULTURE IMPLEMENTATION

With the core techniques developed above, we implemented
Vulture to provide cross-device experiences in real web
environments. Also, we optimized the performance of Vulture.

A. Implementation

We implemented the Vulture prototype in real-world
browser environments. The implementation supported various
devices and platforms: specifically, a Windows-based laptop, an
Android smart TV, an Android tablet computer, and an Android
smartphone. Vulture prototype was developed as a Chrome
extension [18]. In the case of Android devices, we used a
modified version of Chrome, the Kiwi browser [19], because the
Android version of Chrome does not support the extensions. On
the host, the extension handles the host’s functionalities while
interacting with the web app. On the peer, the extension just
opens up a new tab running the Vulture peer app, where the
peer’s functionalities work.

The various functionalities of the Vulture prototype were
implemented with Chrome APIs [20] and Web APIs [21]. For
example, we used the MutationObserver interface [22] to detect
the change in view states. GUI element selection was
implemented by referring to “Select an element” in Chrome
DevTools [23]. When a user places the mouse cursor at a
specific point, the relevant DOM node is highlighted in blue. By
clicking it, the user selects the node. For mouse-less devices
such as smartphones, the user could highlight a DOM node by
touching a specific point and then select the node by dragging
from the point. Note that these Web APIs and WebExtensions
API [24] are being standardized; thus, the Vulture prototype
could be readily integrated into non-Chrome-based browsers in
due course.

TABLE I. API FUNCTIONS OF VULTURE.JS.

Function Parameters Return Type

connectToVirtual

Network()

WebRTC data channel,

Virtual domain name

None Static method

createServer() Request listener Virtual server Static method

listen() Virtual domain name None Virtual server’s
member method

let dc; // WebRTC data channel
let url_host = “vulture-host.com”; // virtual URL
Vulture.connectToVirtualNetwork(dc);
Vulture.createServer((req, res) => {
 // do something with req and res
}).listen(url_host);

(a) Server

let dc, url_host; // same as server
Vulture.connectToVirtualNetwork(dc, url_host);
fetch(“http://” + url_host + “/style.css”, …);

(b) Client

Fig. 5. Sample codes with the Vulture.js.

B. Performance Optimization

Optimizing the performance of the resource transmission
mechanism is important from a user experience point of view.
Vulture employs Server Push [25] to accelerate resource
transmission. Web servers send one response to one request,
while Server Push allows web servers to send multiple responses
for reduced latency and improved page load speed.
Unfortunately, Server Push has barely been adopted in real web
environments because the optimal operation of Server Push
depends on many fine-tuned factors that are difficult to be
decided a priori [26]. In the case of Vulture, the in-browser
virtual proxy should know exactly what web resources should
be delivered to peers. The DOM sender on the host finds all the
URLs when generating the HTML document regarding the
cloned DOM. Then, when transmitting the HTML document,
the DOM sender transfers the web resources related to the URLs
together. The DOM sender does not look for URLs in other web
resources, such as CSS files, for optimized performance; in this
case, the network handler in the peer deals with missing URLs.

VII. EVALUATION

We evaluated the cross-device functionality of Vulture in
real environments. We also analyzed the performance
characteristics of Vulture running in diverse hardware and
network environments.

A. Experiment Setup

For the evaluation, we selected 50 web apps to cover the
various characteristics of web apps. TABLE II lists the selected
web apps. We chose five web apps for each of the eight
scenarios discussed in Section II, including the eight web apps
mentioned in Section II, totaling 40 web apps. We then selected
additional 10 web apps that we considered to be common and
widely used in the real world. When selecting these web apps,
we also considered various factors affecting the performance of
Vulture to make the evaluation closely represent the diverse
characteristics of the web in real life. The experiments were
conducted by following the usage scenarios listed in the first
column of TABLE II. We configured the host and peer
combinations with a laptop (Intel Core i5-10210U CPU) and a
smartphone (Snapdragon 820 MSM8996 SoC AP). To
consistently evaluate the system configuration, we
experimented with the desktop version of a web app for the
laptop and smartphone. We also controlled the network
bandwidth to 20 Mbps by configuring the Wi-Fi router in the
lab.

In the Vulture architecture, the in-browser virtual proxy
plays an important role. However, the proxy can be located
outside the hosts (i.e., remote proxy). To evaluate the
performance advantage of the in-browser virtual proxy
compared with the remote proxy, we built a remote proxy
running on Amazon Web Services (AWS). The preliminary
measurements showed that the latency between a device in the
lab and various servers on the AWS ranged between 10 ms and
more than 200 ms. Thus, we selected 100 ms latency as the
latency for the remote proxy.

B. Functionality

We first conducted an analysis of the cross-device
functionality of Vulture in comparison with the existing
solutions. TABLE III summarizes the functionality of AnyDesk
[3], Chromecast [5], XDBrowser [9], [27], and Vulture. The
eight usage scenarios discussed in Section II were checked for
each solution to see if they could support the GUI distribution.
Our analysis shows that existing solutions were severely limited
in providing fine-grained, cross-device experiences on a range
of real applications. Apart from simple mirroring (C4.2),
AnyDesk virtually provided no GUI distribution. Chromecast
only supported C1.1 and C3.2, where the video component of
the application was transmitted from mobile to big-screen
devices. We found that XDBrowser provided more diverse
cross-device functionalities (C1.2, C2.2, C4.1, and C4.2)
compared to AnyDesk and Chromecast, but its practical use was
limited due to the inability to migrate media elements and lack
of consideration for authentication issues. XDBrowser
supported the usage scenarios only when a user was not involved
with server-side logins.

After verifying Vulture’s functional superiority, we
evaluated its applicability using the 50 web apps listed in
TABLE II. To simplify the experiments, we set the laptop and
the smartphone as the host and peer, respectively. We manually
selected the most appropriate GUI elements to distribute to the
peer based on each web app’s usage scenario. We tested whether
we could distribute the GUI of web apps at a fine-grained level
using Vulture. We also checked the functional correctness of the
web apps after the GUI distribution. The results confirmed that
Vulture provided fine-grained GUI distribution and maintained
functional consistency for all the tested web apps.

C. Performance

We evaluated the performance aspect of Vulture to validate
its usefulness and effectiveness in real cross-device web
environments. We specifically employed the RAIL model [28],
which is known to provide a user-centric performance model for
web apps. The RAIL model categorizes the performance of web

TABLE II. WEB APPS FOR THE VULTURE TEST.

Case Web app Input*

C1.1 Twitch, YouTube Gaming, TED, Coursera, Delish C

C1.2 OpenStreetMap, Waze, Bing Maps, Google Maps, Airbnb D

C2.1 Facebook, Google, GitHub, Instagram, Yahoo T

C2.2
Google Photos, Amazon Photos, Dropbox, OneDrive,
Flickr

C

C3.1 Google Keep, Chrome Canvas, OneNote, Kleki, Sketch.IO C, D

C3.2 YouTube, Vimeo, Dailymotion, Netflix, Facebook Watch C, D

C4.1
Google Presentation, SlideShare, PowerPoint, SlideServe,
Slides

C, D

C4.2 CodePen, Ideone, JSFiddle, Jupyter Notebook, W3Schools C, D, T

Others
MDN Web Docs, Medium, Reddit, Google Scholar, Stack

Overflow, Quora, Gmail, Outlook, Amazon, Walmart
C

* C denotes clicking/touching; T denotes typing; D denotes dragging/swiping.

TABLE III. COMPARISON BETWEEN VULTURE AND EXISTING SOLUTIONS.

Case AnyDesk Chromecast XDBrowser* Vulture

C1.1 ✓ ✓

C1.2 ✓ ✓

C2.1 ✓

C2.2 ✓ ✓

C3.1 ✓

C3.2 ✓ ✓

C4.1 ✓ ✓

C4.2 ✓ ✓ ✓

* XDBrowser works only when a user is not involved with a login session.

apps into four domains: response, animation, idle, and load.
Among these domains, response time and load time were highly
related to the performance of Vulture. The transmission process
for the GUI elements corresponded to the load time of the peer
devices. Meanwhile, the processes for view state reproduction
and user input delegation are relevant to the response time from
the viewpoint of the peer and host, respectively.

GUI and resource transmission time. According to the
load time of the RAIL model, the user experience improves with
the fast migration of the GUI elements and related resources to
the peer. When a user selects a GUI element on the host to send
the element to the peer, the overall process falls into two phases:
(1) sending a base HTML document about the cloned DOM and
(2) sending web resources. In general, sending web resources
requires more traffic than sending the DOM. Sending the DOM
does not involve proxy servers, and there is only one data
transmission: the host sends a base HTML document directly to
the peers via the WebRTC data channel. This phase depends on
the performance of WebRTC. On the other hand, sending web
resources is affected by several factors—especially peer–server
configuration and Server Push. For the evaluation, we measured
the amount of web resources required by the GUI distribution
for each web app listed in TABLE II and selected 10 specific
web apps based on the measurement: low (bottom one-third),
mid (between one-third and two-thirds), and high (top one-
third). We selected JSFiddle (0.04 MB), Google Login (0.1
MB), and YouTube (0.2 MB) in the low group; Jupyter
Notebook (0.4 MB), CodePen (0.5 MB), and GitHub Login (0.7
MB) in the mid group; and Amazon Photos (1.7 MB), Reddit
(3.8 MB), and Waze (7 MB) in the high group.

Fig. 6 summarizes the performance of Vulture with respect
to the web resource transmission time. Here, the load time was
measured as a time delay between when the peer started parsing
the base HTML document and when the load event [29] was
fired on the peer, and we measured the load time ten times for
each web app. The median load time for each chosen app is
shown in the figure. Fig. 6(a) and (b) illustrate the load time of
the peer for the laptop-host and smartphone-host cases,
respectively. The hatched areas in the figures indicate the
additional delay when the peer was configured as a smartphone,

compared to the laptop-peer cases. The results suggested two
important facts. First, the in-browser virtual proxy reduced the
average transmission time by 25.23% compared to the remote
proxy. This result arose from the fact that the in-browser virtual
proxy had the advantage of low latency over the remote proxy.
However, in cases where the host was a smartphone, the virtual
proxy could make a slower transmission than the remote proxy,
as observed in the Waze case. This was attributed to the weaker
computing power of the smartphone and the large-sized web
resources, which mitigated the in-browser virtual proxy’s low
latency characteristic. Nevertheless, the in-browser virtual
proxy performed better for almost all cases than the remote
proxy, making it acceptable to use smartphones as the host.
Second, Server Push effectively reduced the transmission time
by an average of 10.58%. Thus, the in-browser virtual proxy
with Server Push shortened the mean transmission time by
38.47% compared to the remote proxy. The reduction in
transmission time was attributed to the decreased number of
HTTP requests facilitated by Server Push.

View reproduction time. An immediate reflection of the
view changes from the host to peers improves the response time
of the RAIL model, subsequently leading to a good user
experience. Note that according to the RAIL model, the criterion
for users to feel the response is immediate is a 100 ms delay. To
evaluate the responsiveness of view changes on Vulture, we
measured the response time of view changes, i.e., the view state
reproduction time. For the web apps listed in TABLE II, we
executed the given scenarios for 10 seconds and measured the
time to transmit the view changes from the host to the peer. The
time was measured with various host-to-peer combinations and
also with two types of proxy—the in-browser virtual proxy and
the remote proxy. The in-browser virtual proxy was optimized
with Server Push.

Fig. 7(a) shows the distributions of the view state
reproduction time. For the in-browser virtual proxy, the
response time was within 100 ms for almost all cases, indicating
that the view state reproduction could be perceived by users as
almost immediate. We observed that the in-browser virtual
proxy reduced the average view reproduction time by 20.46%.
Note that view changes often accompany additional resource
transmissions; thus, the result suggested that the optimized
resource transmission could improve the efficiency of the view
reproduction. Further explaining the results, Fig. 7(a) shows that
the computing power of the peer device was more critical than
that of the host device. Users using the smartphone peer could
feel that the response was not immediate because the
reproduction time sometimes exceeded 100 ms, especially with
the remote proxy.

User input delegation time. The fast delegation of the user
input from a peer to the host results in a good user experience
related to the response time of the RAIL model. Three types of
user input—clicking or touching, typing, and dragging or

(a) Laptop-to-laptop and laptop-to-smartphone

(b) Smartphone-to-laptop and smartphone-to-smartphone

Fig. 6. Resource transmission time.

(a) View reproduction time (b) User input delegation time

Fig. 7. Synchronization performance.

swiping—are generally used for web apps running on diverse
devices. Clicking, touching and typing consist of only two
events: the start and the end of the input. Dragging and swiping
comprises multiple events, including the start and end points,
because an event is raised whenever a mouse pointer or finger
moves over pixels. The number of events raised is specific to the
types of user inputs and certainly affects the overall response
time. We investigated which types of user input were primarily
used on the peers for each scenario. The “Input” column of
TABLE II summarizes the results. For the evaluation, we chose
four web apps for each type of user input to analyze the
implications of the input delegation time for the response time.

Fig. 7(b) shows the distributions of the user input delegation
time, that is, the response time taken to transfer user inputs from
the peer to the host for each input type. Overall, the user input
delegation time was considered immediate because almost all
user inputs were delegated from the peer to the host within 100
ms. The figure also suggests that the sort of user input barely
affected the response time, even for the dragging or swiping.
Specifically, we measured the user input delegation time with
different device combinations. Similar to the view state
reproduction, Fig. 7(b) shows that the computing power of the
peer had more of an impact on the user input delegation time
than that of the host.

D. Network Traffic

In a mobile web environment where network access is
costly, network traffic should be optimized [30], [31]. We
evaluated the network efficiency of Vulture by measuring the
network traffic generated at runtime. For the comparative
analysis, we implemented the WebRTC-based screen-sharing
scheme [32], which is considered the baseline approach. We
selected three representative web apps for evaluation based on
the premeasured network traffic. The three apps—
OpenStreetMap, YouTube, and Facebook Login—represent the
cases for large, medium, and small amounts of traffic,
respectively.

Fig. 8 shows that Vulture generated less traffic than the
mirroring approach overall. In the figure, idle and active

represent the static and dynamically changing view states of a
web app, respectively. Fig. 8(a), (c), and (e) show that, during
the idle state, Vulture generated significantly less network traffic
than the mirroring approach. This is because the network traffic
of Vulture was generated only when the view state of the host
changed, while the mirroring approach continuously streamed
the entire screen image of the host. Fig. 8(b), (d), and (f) show
the network traffic for the active state. Vulture and the mirroring
approach generated high network traffic in the active state, but
Vulture traffic was far less than that of the mirroring approach,
indicating the efficiency of the synchronization process of
Vulture. In short, the evaluation showed that Vulture performed
efficiently in terms of the network traffic required for cross-
device web functionality.

E. User Study

To assess the cross-device usability of Vulture, we
performed an institutional review board (IRB)-approved user
study with 18 participants. The group consisted of 14 males and
4 females, with 14 in their twenties and 4 in their thirties. The
participants were recruited through bulletin boards at school and
online school communities. Each participant was provided with
three different devices—a smartphone, a tablet computer, and a
laptop computer. We explained the purpose and key features of
Vulture to the participants and then conducted the user study in
two steps. First, the participants were asked to use their own
cross-device web experiences by selecting five web apps that
they thought would be useful with distributed GUI elements
across multiple devices. Second, the participants experienced
the eight cross-device usage scenarios described in Section II.
For each scenario, we used a 5-point Likert scale to inquire about
the usability of the cross-device experiences provided by
Vulture in comparison to single-device web experiences.

In the first step, the participants created various use cases
beyond the eight scenarios presented in the paper. This was
indeed possible because Vulture provided fine-grained GUI
distribution. Interestingly, many participants wished to improve
the visibility of web pages containing too much content in a
single viewport. One specific example was the use of online
course platforms, such as Coursera. The Coursera page on a
laptop computer consists of three key components—a video,
subtitles, and notes. The participants watched a video on full
screen with a laptop and read subtitles or notes on a tablet or
smartphone to improve the user experience. Another interesting
use of Vulture was to enhance user interaction. When editing a
photo on Pixlr with a mouse on a laptop, the user first transferred
the image canvas to a tablet and used a stylus pen to draw more
conveniently. The toolbox component of the application was
also transferred to a smartphone for better usability. Aside from
these specific cases, the participants suggested diverse use cases,
indicating that Vulture is not limited to specific web apps but
can be useful and practical in many applications.

Fig. 9 shows the result of the second step. Overall, the
participants were very positive about cross-device experiences.
Note that Cx.y and others in the figure stand for each scenario in
Section II and for the user-chosen scenarios, respectively. The
number in parentheses is the average score. Among the four
categories in Section II, “hiding personal data” showed the
highest average score (4.53). Specifically, C2.1 delivered the
most positive feedback (average score of 4.56). Some
participants commented that features like C2.1 were impressive

(a) OpenStreetMap (Idle) (b) OpenStreetMap (Active)

(c) YouTube (Idle) (d) YouTube (Active)

(e) Facebook Login (Idle) (f) Facebook Login (Active)

Fig. 8. Network traffic traces.

and useful because they often had uncomfortable experiences of
providing personal information on a public screen. On the other
hand, C4.1 showed the lowest average score (3.61). Some
participants may have already experienced similar cross-device
functionality with other existing applications, resulting in a less
impressive experience with Vulture in this category.

VIII. RELATED WORK

Efforts have been made to utilize multiple devices
simultaneously for improved user experience by distributing a
GUI [1], [33]. The traditional approach for a single user to use
multiple devices at one time is called mirroring, which simply
displays the screen of an app running on one device on another.
Several commercial products exist for mirroring solutions [2]–
[5], [34], [35]. The mirroring approach is generally applicable to
various kinds of apps without having to consider
synchronization among devices; the app runs on one device, and
other devices simply display the shared screen. However, with
the mirroring scheme, the GUI elements of an app cannot be
pinpointed for selective transmission.

More advanced approaches have been introduced to
distribute the GUI elements of native apps across multiple
devices. SAMD [36] and MSA [37] proposed frameworks for
creating new apps that provide a cross-device experience.
XDSession [38] and Husmann et al. [39] proposed tools for
testing or debugging cross-device apps. These frameworks or
tools still require effort from developers; subsequently, several
works, such as CollaDroid [40] and UIWear [41], proposed
schemes that help developers easily convert existing Android
apps into cross-device versions. The development of a new
cross-device app benefits from this approach, but existing apps
must be reauthored with effort. Meanwhile, FLUID [6], FLUID-
XP [7], and PRUID [8] can convert existing apps into cross-
device versions without reauthoring efforts by transmitting the
code or the data required for an app to operate on a peer device.
These solutions are applicable only to Android-based apps; thus,
they are not generally applicable to heterogeneous devices or
computing platforms. To summarize, native app-based solutions
are limited to specific platforms, while Vulture provides cross-
device functionalities across heterogeneous devices.

Research has also been conducted to provide a cross-device
experience for web apps that inherently run in heterogeneous
environments. Several approaches have been proposed for the
solution. First, similar to the mirroring method for native apps,
the screens of web apps have been simply shared with other
devices. Screensharing with WebRTC [32] and Chromecast [5]
belongs to this category. Second, various tools or frameworks
have been proposed to support the development of cross-device
web apps. The tools include Ghiani et al. [42], Virtual Browser
[43], XDStudio [44], Tandem Browsing Toolkit [45], Liquid.js
[46], Panelrama [47], and Crow API [48]. Although these tools

help develop cross-device web apps, developer efforts are still
required. Finally, efforts have been made to provide cross-
device web experiences without reauthoring existing apps.
XDBrowser [9], [27] belongs to this category. XDBrowser
primarily focuses on the HCI issues of a cross-device web app;
thus, the solution is hardly applicable to real web apps.
Specifically, XDBrowser lacks solutions for the essential
challenges in providing cross-device web experiences in real
life, such as authorization, the synchronization of GUI elements,
and the handling of user input. Vulture addresses and solves
these technical issues to provide cross-device functionalities in
the wild.

IX. NOVELTY OF THE PROPOSED WORK

No modifications of applications. Application reauthoring
hampers the widespread use of cross-device web experiences.
First, reauthoring shifts the development burden onto
developers. Although cross-device experiences are useful,
developers might not want to put their efforts into developing
such functionality. This is the primary reason most applications
currently do not provide cross-device GUI distribution. Second,
developers might not foresee all use cases of cross-device
experiences; that is, it is not pragmatic for developers to cover
various usage scenarios. With Vulture, users can select and
distribute GUI elements the way they want to use the
applications on their devices; thus, the developers are freed from
the diversity issue in implementation.

Application-level approach. Previous research on fine-
grained GUI distribution, such as FLUID, FLUID-XP, and
PRUID, adopted an OS-level approach, where the underlying
operating systems are modified for the solution. The solutions
are highly dependent on the operating systems, such as Android.
On the contrary, Vulture solves the platform dependency issue
by exploiting the meta-platform characteristic of web
applications. Modifying the browser is a possible solution for
cross-device web experiences, but it can lead to the browser
dependency issue, requiring a specific browser for users. With
the application-level approach, Vulture is compatible with the
standard Web APIs and thus works consistently on various
platforms and browsers.

X. CONCLUSION

We presented key challenges and solutions that should be
addressed to provide readily usable cross-device functionalities
in real-world web environments. We proposed an in-browser
virtual proxy to efficiently distribute web resources from the
host to peers. To this end, we developed a cross-device virtual
HTTP and an API for the scheme. For the functional consistency
among distributed web GUIs, we proposed a two-tier DOM
architecture that provides a single-browser illusion to web apps.
We hope that Vulture can help research in the relevant fields and
provide directions in web standards development for supporting
fully functional cross-device web experiences.

ACKNOWLEDGMENTS

This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No. 2018-0-
00532, Development of High-Assurance (≥EAL6) Secure
Microkernel).

Fig. 9. User study results on the usability of Vulture.

REFERENCES

[1] F. Brudy et al., “Cross-Device Taxonomy: Survey, Opportunities and
Challenges of Interactions Spanning Across Multiple Devices,” in Proc.
2019 CHI Conference on Human Factors in Computing Systems (CHI
’19), 2019, pp. 1–28.

[2] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper, “Virtual
network computing,” IEEE Internet Comput., vol. 2, no. 1, pp. 33–38,
1998.

[3] “AnyDesk,” https://anydesk.com/en

[4] “Chrome remote desktop,” https://remotedesktop.google.com/access/

[5] “Chromecast,” https://store.google.com/product/chromecast

[6] S. Oh et al., “FLUID: Flexible User Interface Distribution for Ubiquitous
Multi-Device Interaction,” in Proc. 25th Annual International
Conference on Mobile Computing and Networking (MobiCom ’19), 2019,
pp. 1–16.

[7] S. Lee et al., “FLUID-XP: Flexible User Interface Distribution for Cross-
Platform Experience,” in Proc. the 27th Annual International Conference
on Mobile Computing and Networking (MobiCom ’21), 2021, pp. 762–
774.

[8] M. Cui et al., “PRUID: Practical User Interface Distribution for Multi-
surface Computing,” in 2021 58th ACM/IEEE Design Automation
Conference (DAC), 2021, pp. 679–684.

[9] M. Nebeling, “XDBrowser 2.0: Semi-Automatic Generation of Cross-
Device Interfaces,” in Proc. 2017 CHI Conference on Human Factors in
Computing Systems (CHI ’17), 2017, pp. 4574–4584.

[10] “A typical HTTP session - HTTP | MDN,” https://developer.mozilla.org/
en-US/docs/Web/HTTP/Session

[11] “Using HTTP cookies - HTTP | MDN,” https://developer.mozilla.org/en-
US/docs/Web/HTTP/Cookies

[12] “JSON Web Token Introduction - jwt.io,” https://jwt.io/introduction/

[13] “Single-page application vs. multiple-page application,” https://
medium.com/@NeotericEU/single-page-application-vs-multiple-page-
application-2591588efe58

[14] B. Powers, J. Vilk, and E. D. Berger, “Browsix: Bridging the gap between
unix and the browser,” in Proc. Twenty-Second International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’17), 2017, pp. 253–266.

[15] “Node.js,” https://nodejs.org/en/

[16] “WebContainer,” https://github.com/stackblitz/webcontainer-core

[17] “Service Worker API - Web APIs | MDN,” https://developer.mozilla.org/
en-US/docs/Web/API/Service_Worker_API

[18] “What are extensions? - Google Chrome,” https://developer.chrome.com/
extensions

[19] “Kiwi Browser,” https://play.google.com/store/apps/details?id=com.
kiwibrowser.browser

[20] “Chrome APIs - Google Chrome,” https://developer.chrome.com/
extensions/api_index

[21] “Web APIs - Google Chrome,” https://developer.chrome.com/apps/
api_other

[22] “MutationObserver - Web APIs | MDN,” https://developer.mozilla.org/
en-US/docs/Web/API/MutationObserver

[23] “CSS features reference - Chrome Developers,” https://developer.
chrome.com/docs/devtools/css/reference/#select

[24] “Browser Extensions - Mozilla | MDN,” https://developer.mozilla.org/en-
US/docs/Mozilla/Add-ons/WebExtensions

[25] “Server Push,” https://web.dev/performance-http2/#server-push

[26] N. Kansal, M. Ramanujam, and R. Netravali, “Alohamora: Reviving
{HTTP/2} Push and Preload by Adapting Policies On the Fly,” in 18th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’18), 2021, pp. 269–287.

[27] M. Nebeling and A. K. Dey, “XDBrowser: User-Defined Cross-Device
Web Page Designs,” in Proc. 2016 CHI Conference on Human Factors
in Computing Systems (CHI ’16), 2016, pp. 5494–5505.

[28] “Measure performance with the RAIL model,” https://web.dev/rail/

[29] “Window: load event - Web APIs | MDN,” https://developer.mozilla.org/
en-US/docs/Web/API/Window/load_event

[30] V. Agababov et al., “Flywheel: Googles Data Compression Proxy for the
Mobile Web,” in 12th USENIX Symposium on Networked Systems Design
and Implementation (NSDI ’15), 2015, pp. 367–380.

[31] R. Netravali and J. Mickens, “Prophecy: Accelerating Mobile Page Loads
Using Final-state Write Logs,” in 15th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’18), 2018, pp. 249–266.

[32] “Screensharing with WebRTC | Google Developers,” https://developers.
google.com/web/updates/2012/12/Screensharing-with-WebRTC

[33] F. Paternò, “Concepts and design space for a better understanding of
multi-device user interfaces,” Univers. Access Inf. Soc., vol. 19, no. 2, pp.
409–432, 2020.

[34] “TeamViewer,” https://www.teamviewer.com/en-us/

[35] “Vysor,” https://www.vysor.io/

[36] J. Lee, H. Lee, B. Seo, Y. C. Lee, H. Han, and S. Kang, “SAMD: Fine-
Grained Application Sharing for Mobile Collaboration,” in 2018 IEEE
International Conference on Pervasive Computing and Communications
(PerCom), 2018, pp. 1–10.

[37] Z. Chen, T. Wang, J. Xue, and Z. Shao, “MSA: A Novel App
Development Framework for Transparent Multiscreen Support on
Android Apps,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 42,
no. 10, pp. 3171–3184, 2023.

[38] M. Nebeling, M. Husmann, C. Zimmerli, G. Valente, and M. C. Norrie,
“XDSession: Integrated Development and Testing of Cross-Device
Applications,” in Proc. 7th ACM SIGCHI Symposium on Engineering
Interactive Computing Systems (EICS ’15), 2015, pp. 22–27.

[39] M. Husmann, N. Heyder, and M. C. Norrie, “Is a Framework Enough?
Cross-Device Testing and Debugging,” in Proc. 8th ACM SIGCHI
Symposium on Engineering Interactive Computing Systems (EICS ’16),
2016, pp. 251–262.

[40] J. Zheng et al., “CollaDroid: Automatic Augmentation of Android
Application with Lightweight Interactive Collaboration,” in Proc. 2017
ACM Conference on Computer Supported Cooperative Work and Social
Computing (CSCW ’17), 2017, pp. 2462–2474.

[41] J. Xu, Q. Cao, A. Prakash, A. Balasubramanian, and D. E. Porter,
“UIWear: Easily Adapting User Interfaces for Wearable Devices,” in
Proc. 23rd Annual International Conference on Mobile Computing and
Networking (MobiCom ’17), 2017, pp. 369–382.

[42] G. Ghiani, F. Paternò, and C. Santoro, “Push and Pull of Web User
Interfaces in Multi-Device Environments,” in Proc. International
Working Conference on Advanced Visual Interfaces (AVI ’12), 2012, pp.
10–17.

[43] B. Cheng, “Virtual Browser for Enabling Multi-device Web
Applications,” in Proc. Workshop on Multi-device App Middleware
(Multi-Device ’12), 2012.

[44] M. Nebeling, T. Mintsi, M. Husmann, and M. Norrie, “Interactive
Development of Cross-Device User Interfaces,” in Proc. SIGCHI
Conference on Human Factors in Computing Systems (CHI ’14), 2014,
pp. 2793–2802.

[45] T. Heikkinen, J. Goncalves, V. Kostakos, I. Elhart, and T. Ojala, “Tandem
Browsing Toolkit: Distributed Multi-Display Interfaces with Web
Technologies,” in Proc. International Symposium on Pervasive Displays
(PerDis ’14), 2014, pp. 142–147.

[46] A. Gallidabino and C. Pautasso, “The Liquid User Experience API,” in
WWW ’18 Companion: The 2018 Web Conference Companion, 2018, pp.
767–774.

[47] J. Yang and D. Wigdor, “Panelrama: Enabling Easy Specification of
Cross-Device Web Applications,” in Proc. SIGCHI Conference on
Human Factors in Computing Systems (CHI ’14), 2014, pp. 2783–2792.

[48] S. Park, J. Lee, and H. Cha, “Crow API: Cross-device I/O Sharing in Web
Applications,” in IEEE INFOCOM 2023 - IEEE Conference on Computer
Communications, 2023, pp. 1–10.

