

Crow API: Cross-device I/O Sharing in Web Applications

Seonghoon Park, Jeho Lee, and Hojung Cha*

Department of Computer Science

Yonsei University

Seoul, Republic of Korea

{park.s, jeholee, hjcha}@yonsei.ac.kr

Abstract—Although cross-device input/output (I/O) sharing is
useful for users who own multiple computing devices, previous
solutions had a platform-dependency problem. The meta-platform
characteristics of web applications could provide a viable solution.
In this paper, we propose the Crow application programming
interface (API) that allows web applications to access other
devices’ I/O through standard web APIs without modifying
operating systems or browsers. The provision of cross-device I/O
should resolve two key challenges. First, the web environment
lacks support for device discovery when making a device-to-device
connection. This requires a significant effort for developers to
implement and maintain signaling servers. To address this
challenge, we propose a serverless Crow connectivity mechanism
using devices’ I/O-specific communication schemes. Second,
JavaScript runtimes have limitations in supporting cross-device
inter-process communication (IPC). To solve the problem, we
propose a web IPC scheme, called Crow IPC, which introduces a
proxy interface that relays the cross-device IPC connection. Crow
IPC also provides a mechanism for ensuring functional
consistency. We implemented the Crow API as a JavaScript
library with which developers can easily develop their
applications. An extensive evaluation showed that the Crow API
provides cross-device I/O sharing functionality effectively and
efficiently on various web applications and platforms.

Index Terms—cross-device I/O sharing, web application,
mobile web, WebRTC, application programming interface (API).

I. INTRODUCTION

With the widespread use of diverse mobile devices, users
commonly own multiple computing devices, ranging from
traditional desktop computers to wearable devices. Easy access
to multiple devices has brought attention to cross-device
input/output (I/O) sharing techniques, which allow user
applications to utilize other devices’ I/O whose functionality
was originally developed for single-device environments. These
techniques offer useful experiences in two ways. First, I/O
sharing is helpful when a device does not have an appropriate
I/O for an application. For example, suppose a user is running a
video-conferencing application on a desktop computer with no
camera. With cross-device I/O sharing, the user can access his
or her smartphone camera instead, as shown in Fig. 1(a).
Second, I/O sharing allows users to access more convenient I/O
options. Assume that a user is using a virtual keyboard to edit
texts on a smartphone. Using the virtual keyboard may degrade
the user experience because the keyboard takes up certain areas
of the screen. As illustrated in Fig. 1(b), the user would utilize
the entire screen if he or she used a desktop’s physical keyboard.

Cross-device I/O sharing can be provided via native OS
support or via application-level protocols. Previous solutions
mostly focused on the native OS support [1]–[4]. However, OS
modifications are difficult and would hurt the portability of apps
that rely on a particular OS’s functionality. Application-level
approaches shift the development burden to application

programmers, forcing them to translate the underlying platform
idiosyncrasies into platform-neutral abstractions. In this regard,
web applications can help the programmers alleviate the burden
due to the “meta-platform” characteristic. Modern web browsers
provide platform-neutral abstractions of I/O devices, such as
cameras, microphones, and sensors, with the standard web APIs
[5]. In addition, current browsers support progressive web
applications (PWAs) [6], which provide native application-like
user experiences. The meta-platform characteristic of web
applications offers great opportunities for cross-device I/O
sharing on heterogeneous devices.

Despite this potential, cross-device I/O sharing in web
applications has not been widely adopted because the approach
requires considerable efforts in reauthoring applications to
provide such functionalities. Thus, a new API mitigating the
efforts would be greatly helpful. Two practical challenges exist
in designing such an API. First, the web environment lacks
support for device discovery when making a device-to-device or
peer-to-peer connection. Web Real-Time Communication
(WebRTC) [7] is practically the only way to support
communications in web applications, but signaling servers are
explicitly required for the operations. Second, the inherent
characteristics of JavaScript runtime make it difficult for web
applications to use other devices’ I/O. Cross-device I/O sharing
requires inter-process communication (IPC) functionality
between devices. However, JavaScript runtimes provide no
direct IPC to external processes.

In this paper, we propose an API, called the Crow API, to
help web developers provide cross-device I/O sharing in web
applications. By simply adding a few lines of Crow API code to
the application, web developers can easily provide I/O sharing
functionality in their applications. For practical and efficient
device discovery and connectivity, we propose the Crow
connectivity mechanism, which allows web applications to
establish WebRTC connections without a signaling server. The
mechanism basically exploits quick response (QR) codes and
MousePath [8] to establish connections covering various types
of computing devices. To address JavaScript’s inherent
limitations for providing cross-device I/O, the API provides a
cross-device IPC mechanism, called the Crow IPC. The new
IPC enables JavaScript runtimes to communicate with browser
processes on other devices and synchronizes I/O data between
devices.

(a) Camera sharing (b) Keyboard sharing

Fig. 1. Cross-device I/O sharing.

* Corresponding author

Camera Text

Hello, world!

…

…

We implemented the Crow API as a JavaScript library so
that web developers can readily import it into their applications
with minimum effort. Additionally, we developed a browser
extension that automatically inserts the Crow API into web
applications. With this feature, cross-device I/O sharing
functionality can be implemented in existing web applications.

II. BACKGROUND

We describe the workflow of web applications and web APIs
related to I/Os. Then, we discuss several challenges in
supporting cross-device I/O sharing in web applications.

A. WebRTC

WebRTC is the standard and only way to provide peer-to-
peer communications in web applications. WebRTC especially
aims to provide audio and video communication. To make
WebRTC connections between two peers, the peers exchange
their session description protocols (SDPs), which include
diverse information needed to establish WebRTC connections.
The SDP exchange is bidirectional—a peer (caller) sends an
SDP offer to another peer (callee), then the caller receives an
SDP answer from the callee. The WebRTC API does not include
peer discovery or device discovery mechanisms; thus, signaling
servers are necessary to discover other devices and exchange
SDPs with the devices before the WebRTC connection is
established.

B. Web APIs for I/O Devices

The overall flow of a web application running on a modern
web browser is illustrated in Fig. 2. The single-threaded
renderer process is built up with a JavaScript runtime and a
rendering engine. JavaScript codes are interpreted by a browser
and executed in a JavaScript runtime. The JavaScript runtime
cannot make a direct IPC connection to other processes. Instead,
the native C++ codes of the rendering engine establish the IPC
connection to the browser process. When the JavaScript codes
call web APIs to exploit various functionalities of the underlying
operating systems, the rendering engine forwards the API call to
the browser process through the IPC. The browser process
handles I/O functionality and returns I/O data to the rendering
engine. JavaScript codes usually have callback functions for the
I/O requests. Upon receiving the I/O data, a JavaScript runtime
inserts the callback functions into the runtime’s queue. The
event loop of the runtime periodically checks whether the call
stack is empty, and if it is, the loop takes a runnable callback
function from the queue and then pushes the function into the
call stack.

Table I lists the standard web APIs related to I/Os. Each web
API has different usage semantics. For instance, the Geolocation

API, the MediaStream API, and UIEvent interfaces are handled
by global objects. Sensor APIs are accessed through non-global
objects; therefore, web applications should create relevant
objects by calling constructors. As summarized in Table I, I/O
data fall into three types: general, periodic, and media stream.
General data indicate a single I/O data response for an I/O
request, while periodic data refer to a continuous response to an
I/O request. Media stream–type data are video or audio, which
is handled as encoded data.

C. Challenges

The standard web APIs provide a uniform user experience
for various operating systems or browsers. This meta-platform
characteristic implies that web applications potentially provide
cross-device I/O sharing, in principle, even in heterogeneous
environments. Despite this potential, conventional web
applications barely support cross-device I/O sharing
functionalities because of the non-trivial amount of development
efforts. One approach for alleviating developers’ efforts is to
provide a new API for cross-device I/O sharing. Two key
challenges should then be resolved to design such an API.

Challenge 1. The web environment lacks direct support for
device discovery. As described in Section II.A, WebRTC does
not provide functionality for device discovery. Moreover, web
browsers do not support device discovery mechanisms readily
used by native applications, such as Bluetooth advertising, Wi-
Fi direct, and multicast domain name service (mDNS).
Exploiting signaling servers is practically the only way to handle
device discovery in web applications. Apart from original web
servers, Web developers should implement and maintain
signaling servers additionally. Moreover, developers should
write codes for their web applications to communicate with the
signaling servers. This results in significant development efforts
for device discovery. Therefore, a new API is needed to mitigate
the development efforts, but its provisioning is challenging due
to many practical constraints in device usage.

Challenge 2. JavaScript’s inherent characteristics make it
difficult for web applications to use other devices’ I/O.
JavaScript runtimes lack support for general-purpose IPC
functionality. As described in Section II.B, a web application
needs IPC connections between the renderer process and the
browser process to use I/O. Because JavaScript runtimes are
unable to establish direct IPC connections with the browser
process, the runtimes require support from the C++ codes of the
rendering engine to communicate with the browser process.
Unfortunately, the rendering engine was developed for single-
device environments. The rendering engine of current browsers
makes IPC connections only to the browser process in the same
browser, and cannot establish direct IPC connections to other
device’s browser processes. In addition, the JavaScript language
does not support direct memory management because
JavaScript allocates memory automatically. Previous work on
cross-device I/O sharing in Android applications [1]–[3]

Fig. 2. Web workflow from the I/O perspective.

TABLE I. WEB APIS FOR I/O DEVICES.

Web API I/O device Global I/O data type

Geolocation API Global positioning system (GPS) Yes
General/
Periodic data

MediaStream API Camera, microphone, speaker Yes Media stream

Sensor APIs Accelerometer, light sensor, etc. No Periodic data

UIEvent Interface Keyboard, mouse, touch, etc. Yes General data

Renderer Process

JavaScript Runtime

Call Stack

JS Heap

Rendering Engine

C++ Heap

Web APIs C++ Code

Operating System

I/O Devices

Web Browser running Web App

Queues

Browser

Process

I/O

Network

GUI

IPC

introduced various memory-sharing techniques for
synchronizing data. However, due to the inherent limitation of
JavaScript in accessing memory areas, ensuring functional
consistency is challenging when synchronizing data for cross-
device I/O.

III. CROW API OVERVIEW

We propose the Crow API to mitigate programming efforts
for supporting device discovery and I/O sharing functionality
without modifying OSs or browsers. The overall workflow of
cross-device I/O-enabled web applications is discussed below,
followed by a detailed description of the API functions.

A. Workflow

The workflow and overall architecture of the Crow API are
illustrated in Fig. 3. The primary device running a web
application is defined as the host, and the secondary device
delivering I/O functionality to the host is the peer. For cross-
device I/O-enabled web applications, developers should
implement host and peer applications using the Crow API. The
architecture supports multiple peers for a single host; however,
to keep the descriptions brief, throughout the paper, we explain
the architecture based on a one-to-one host–peer configuration.

The Crow API includes three operational phases: (1) the
signaling phase, (2) the I/O sharing phase, and (3) the
disconnection phase. First, in the signaling phase, the API
displays specific graphical user interfaces (GUIs) on the host
and the peer. Users handle the GUIs for the host to discover the
peer and establish WebRTC connections to the peer. This GUI-
based signaling is used only for the first connection between the
host and the peer to minimize the users’ engagement. Then,
during the I/O sharing phase, users exploit the peer’s I/O while
the main parts of the web applications run on the host. Finally,
in the disconnection phase, the WebRTC connection stops, and
web applications perform specific operations defined by the
developers. Note that current browsers require web applications
to acquire proper permissions for each I/O before using the I/O
[9]. Crow API follows the browser’s permission policy related
to I/O usage.

The Crow API provides solutions to enable the workflow.
For the connection phase, the Crow API handles the device
discovery issue related to signaling servers. We propose a
serverless WebRTC signaling scheme for Crow connectivity.

The GUIs displayed by the Crow API are designed under the
connectivity mechanism. Section IV explains the scheme in
detail. For the I/O sharing phase, the issues regarding
JavaScript’s lack of general-purpose IPC and direct memory
management are handled adequately. We propose the Crow IPC
mechanism through which the Crow API communicates
transparently with other devices’ browser processes. The Crow
IPC is detailed in Section V.

B. Developer API

The Crow API functions are summarized in Table II. Fig. 4
shows a sample code of a web application that uses the Crow
API to retrieve GPS data from a peer. In this example, the host
and the peer are a desktop and a smartphone, respectively. A key
goal of the Crow API design is to provide simplicity of usage.
By simply adding a few lines of the Crow API codes, web
developers can provide device discovery and I/O sharing
functionalities for their web applications.

Signaling Phase. The Crow API provides two functions for
the signaling phase: switchToVirtualAPI() and respondTo
VirtualAPIRequest(). On the host, web applications call
switchToVirtualAPI() and pass an argument (i.e., the I/O name
to use from the peer) to the function. On the peer,
respondToVirtualAPIRequest() is used to respond to the host’s
request. The signaling process caused by these functions
depends on whether it is the first signaling between the host and
the peer. If it is, the functions display the GUI for making a
WebRTC channel on the host and the peer. Otherwise, the host
and the peer make WebRTC channels without the GUI, which
is possible with the channel embedding described in Section
IV.B.

I/O Sharing Phase. Cross-device I/O-enabled web
applications use the same standard web API functions to get the
I/O data from the peer, even after the Crow API is applied to the
applications. For example, web applications originally use the
getCurrentPosition() function to obtain the host’s GPS data.
Web applications use the same function to obtain the peer’s GPS
data. The difference is whether the Crow API functions are
called during the connection phase. To transparently access the
peer’s GPS data, the Crow API introduces virtual APIs. The API
calls for the peer’s I/O are forwarded to the virtual API objects
instead of the original web APIs. The virtual APIs communicate
with the peer’s browser processes through the Crow IPC.

Fig. 3. The workflow and architecture of the Crow API.

TABLE II. THE CROW API.

Function Parameters Return

switchToVirtualAPI()a I/O name {Host, Peer}Descriptor

switchToOriginalAPI()a I/O name Void

respondToVirtualAPIRequest()a Void {Host, Peer}Descriptor

addDisconnectionHandler()b Callback function Handler ID

removeDisconnectionHandler()b Handler ID Void
a Static Crow API method. b {Peer, Host}Descriptor member

let peer = await Crow.switchToVirtualAPI(“GPS”); // (1) Signaling
navigator.geolocation.getCurrentPosition(…); // (2) I/O Sharing
peer.addDisconnectionHandler((e) => {…}); // (3) Disconnection
Crow.switchToOriginalAPI(“GPS”);

(a) Host

let host = await Crow.respondToVirtualAPIRequest();
host.addDisconnectionHandler((e) => {…});

(b) Peer
Fig. 4. Sample code with the Crow API.

Renderer Process

JavaScript Runtime

JS Code

Rendering

Engine
C++ Code

Crow API

Browser Process

Web APIs

Virtual APIs

Browser Process

Crow IPC

Operating System

I/O Devices

Operating System

I/O Devices

Web Browser running Web App

Peer

IPC

Web Browser

JS Runtime

Proxy Interfaces

C++ Code

Engine

Renderer Process

Web APIs

Crow IPC path

GUI

GUI

(a) Connection Phase (b) I/O Sharing Phase

Host

Interact to

make a connection

Disconnection Phase. The connection between the host and
the peer terminates upon the user’s intention or network
intermittency. To handle cases where web applications wish to
stop the connections, the Crow API provides the switchTo
OriginalAPI() function. For dealing with unintended network
intermittency, the Crow API provides two functions: add
DisconnectionHandler() and removeDisconnectionHandler().

IV. CROW CONNECTIVITY MECHANISM

The Crow connectivity mechanism enables web applications
to discover other devices without a signaling server, and
establish WebRTC connections directly to the devices. For the
serverless WebRTC signaling, we propose a signaling scheme
through which web applications exchange SDPs. Moreover, we
provide techniques for optimizing the connectivity mechanism.

A. Serverless Signaling Scheme

Establishing WebRTC connections requires web
applications to exchange SDPs. The Crow API’s serverless
signaling scheme is specifically designed to allow web
applications to discover other devices and exchange SDPs
without signaling servers. The signaling scheme should employ
device discovery and data transmission functionalities for web
applications. The scheme also aims to accommodate a wide
range of computing devices, such as desktops, laptops, tablets,
and smartphones.

To develop the serverless signaling scheme, we evaluated
various options listed in Table III. The methods broadly fall into
two categories: radio frequency (RF)-based schemes and
display-based schemes. The RF-based approach includes
Bluetooth (BT) and near-field communication (NFC), which are
commonly used in native applications. Unfortunately, the RF-
based methods are not suitable for the Crow API’s signaling
scheme because the relevant APIs do not support low-level
operations such as device discovery—an essential feature for
signaling. Furthermore, desktop computers generally do not
support RF-based schemes. The display-based schemes send
data by encoding the data and exposing the encoded data on
display screens. QR codes and MousePath [8] belong to this
category. QR codes are widely used for display-to-camera
communication. MousePath was proposed for display-to-mouse
communication. The scheme sends data by displaying the
movement of textures on the display screen and receives the data
by sensing movement with the optical mouse. The display-based
schemes have advantages compared to the RF-based schemes.
First, the display-based approach is fully compatible with web
applications. Web applications can use and control screens,
cameras, and mouses with virtually no constraints. Second, the
display-based approach does not necessitate a complicated
method for device discovery, such as Bluetooth advertising.
Device discovery of the display-based approach just relies on
users—the devices exchange data under physical proximity.

Third, the display-based approach has broad coverage of devices
because computing devices have display screens as basic output
devices.

The Crow API’s signaling scheme utilizes the display-based
approach. Fig. 5 illustrates the data transmission of the Crow
API’s signaling scheme. The data transmission which is
necessary for SDP exchange consists of a sender and a receiver.
As shown in Table III, each method does not provide full
coverage, especially in terms of receivers. The signaling
scheme, therefore, does not rely solely on a single
communication method; instead, the proposed scheme combines
the two methods, QR codes and MousePath, to compensate for
the coverage constraints of each method. When users wish to
send data, the sender encodes the data into the QR codes or the
MousePath codes and displays the codes on the screen. The
receiver acquires the codes with the camera or the optical mouse,
and decodes the codes into the original data.

This combination makes it possible for the serverless
signaling scheme to support various peer-to-peer configurations.
Note that WebRTC connection needs bidirectional SDP
exchanges, as described in Section II.A. The computing devices
listed in Table III fall into two groups: (1) mouse-equipped
devices, such as desktops, and (2) camera-equipped devices
such as laptops, tablets, and smartphones. For connections
between two mouse-equipped devices, both devices use
MousePath to transmit data. For connections between two
camera-equipped devices, the devices exchange data through
QR codes. For connections between mouse- and camera-
equipped devices, camera-equipped devices send data through
MousePath, while mouse-equipped devices transmit data via QR
codes.

B. Optimization

The display-based approach requires end-users to cope with
cameras or optical mouses by themselves. Considering the
amount of SDP data and data throughput of the display-based
schemes, users may have to spend a substantial amount of time
making a WebRTC connection, leading to a poor user
experience. We propose three optimization techniques for
minimizing user engagement: channel embedding, protocol data
reduction, and prioritization. Fig. 6 shows the overall flow of the
connectivity mechanism with the proposed techniques.

Channel Embedding. The idea of the channel embedding is
to embed WebRTC media channels or other data channels into
WebRTC data channels, as described in Fig. 6. There are two
types of WebRTC channels: data channels and media channels.
Data channels are used for exchanging text messages between

TABLE III. VARIOUS OPTIONS FOR SERVERLESS SIGNALING.

 Sender Receiver

BT NFC QR MousePath BT NFC QR MousePath

Desktop ✓ ✓ ✓

Laptop ✓a ✓ ✓ ✓a ✓

Tablet ✓a ✓a ✓ ✓ ✓a ✓a ✓

Smartphone ✓a ✓a ✓ ✓ ✓a ✓a ✓
a Device discovery is possible on native apps; while not on web apps.

Fig. 5. The data transmission of the Crow API’s signaling scheme.

Sender

QR codes

MousePath Transmitter

Data

Encode

MousePath Receiver

←↑→↓ …

QR Scanner

Receiver

Movement codes

←↑→↓ …

Data

Transmit

via display

Transmit

via display

Decode

devices, while media channels are used for sharing videos or
audio. The SDPs for media channels include various types of
information, such as codecs, bitrates, etc.; thus, the length of the
SDPs for the media channels is significantly longer than that of
data channels. When web applications want to make media
channels, the Crow connectivity mechanism first establishes a
WebRTC data channel through the display-based data
transmission schemes, and then the SDPs for the media channel
are transmitted through the data channel. With this scheme, the
amount of data sent is significantly reduced when making media
channels, and so is user involvement. Channel embedding is also
used when the host and the peer make additional channels for
I/O sharing. If the host and the peer already have a data channel
between them, the extra call to switchToVirtualAPI() does not
require user involvement for the display-based signaling. The
host and the peer make WebRTC channels via the data channel
established by the first call to switchToVirtualAPI().

Protocol Data Reduction. Protocol data reduction
minimizes the time taken for the Crow API’s signaling scheme
to send data by removing the redundant parts between an SDP
offer and an SDP answer. The offer and the answer contain
similar data because they are based on the same structure [10].
After receiving the SDP offer from the host, the peer sends the
data to the host with the redundant parts removed in the protocol.

Prioritization between Data Transmission Schemes. For
connections between mouse- and camera-equipped devices,
where both QR codes and MousePath are used, the Crow
connectivity mechanism sets priorities between the QR codes
and MousePath. The QR code method is simpler and easier for
end-users to handle than MousePath. In addition, the length of
the SDP answers becomes shorter than that of the offers with the
protocol data reduction scheme. Therefore, to make the most of
the protocol data reduction, mouse-equipped devices should
send the SDP offers through QR codes, and camera-equipped
devices should send the SDP answers via MousePath. However,
there are cases where the host and the peer are camera- and
mouse-equipped devices, respectively, as shown in Fig. 1(b).
Thus, the Crow API allows both hosts and peers to start the
device discovery process.

V. CROW IPC

In this section, we describe the Crow IPC mechanism, which
addresses JavaScript’s inability to establish direct IPC

connections to other devices’ browser processes. We also
describe how Crow IPC ensures functional consistency of cross-
device I/O-enabled web applications. Fig. 7 illustrates the
overall view of Crow IPC.

A. Proxy Interface

A proxy interface is a JavaScript object that relays an IPC
connection to the peer’s browser process. For Crow IPC, the
Crow API exploits the peer’s runtime through a proxy interface.
When a web application tries to use the peer’s I/O, the virtual
API forwards the I/O-related web API function to the peer (the
function-forwarding phase). Upon receiving the forwarded API
function, the proxy interface calls the web API functions on
behalf of the host. After the peer’s browser process returns I/O
data to the proxy interface through the web APIs, the proxy
interface forwards the I/O data to the host’s virtual API (the
data-receiving phase). With the proxy interface, the host’s
JavaScript runtime can communicate with the peer’s browser
process.

B. Ensuring Functional Consistency

Crow IPC provides two mechanisms to ensure functional
consistency: reference-free function forwarding and cross-
device data synchronization.

Reference-free Function Forwarding. Reference-free
function forwarding is used when a virtual API forwards the web
API functions from the host to the peer. The key concept is to
exchange data free of side effects between the host and the peer,
while the functions that are likely to have side effects remain on
each device. The web API functions typically have three kinds
of parameters: callback functions for success, callback functions
for error, and non-function values such as options and
constraints. Except for the non-function values, the parameters
are likely to cause side effects because JavaScript functions are
not purely functional; they may alter variables or states outside
the functions. Therefore, a virtual API should not forward
callback functions to the peer. When a virtual API delegates web
API functions to the peer, the virtual API sends only the name
of the web API function and the option values.

Cross-device Data Synchronization. After functions are
forwarded, the host’s virtual APIs receive I/O data from the
peer’s proxy interface through cross-device data
synchronization. The overall concept is illustrated in Fig. 8.
Crow IPC provides three kinds of data synchronization
methods—one for each I/O data type discussed in Table I. For
general data, the proxy interface returns I/O data to the virtual
APIs through messages. Note that callback functions remain in
the host during the function-forwarding phase. The virtual APIs
maintain a map data structure to record which callback function
is required for I/O data. Upon getting I/O data via messages, the
virtual APIs look up the relevant callback function in the map

Fig. 6. The flow of the Crow connectivity mechanism.

Fig. 7. Crow IPC workflow.

Host

Call

switchToVirtualAPI()

Call respondTo

VirtualAPIRequest()
Call Crow API functions

Send SDP Offer Wait for SDP Offer

Make SDP Answer

Send Diff(Answer, Offer)Wait for SDP Answer

Exchange SDPs for

a WebRTC data channel

Send SDP Offer
(Optional)

Exchange SDPs for

a WebRTC media channel

or another data channel

Wait for SDP Offer

Generate and send

SDP Answer
Wait for SDP Answer

Send/Receive data Send/Receive dataStart I/O sharing phase

Peer

Communication through the display-based data transmission schemes

Communication through the WebRTC data channel

Call Stack

C: Success or Error Callback Functions

O: Options

Queues

JavaScript Runtime

Renderer Process (Host)

JavaScript Runtime

Renderer Process (Peer)

O
C, O C, O

C
C

datadata

O
O data

Proxy

Interface

Browser Process (Peer)

Web

APIs

Crow

API
Virtual

APIs

and insert the callback function into the queues in a JavaScript
runtime. The runtime then executes the callback function when
the call stack of the runtime is empty.

For periodic data, Crow IPC uses a cross-device shared
buffer to share I/O data between the virtual APIs and the proxy
interface. The synchronization process follows a producer–
consumer pattern. After calling the web APIs, the virtual APIs
try to read I/O data from the shared buffer with the given
frequency. If the buffer is empty, the virtual APIs’ reading tasks
wait until the peer writes the data to the buffer; if not, the virtual
APIs read the data and execute the callback function for the I/O.
As the JavaScript is single-threaded, the reading tasks should not
use busy waiting. Instead, the virtual APIs have queues in which
the reading tasks are inserted and wait asynchronously.
Meanwhile, the peer’s proxy interface tries to write I/O data to
the buffer and has a queue for the writing tasks’ asynchronous
waiting.

For media streams such as video and audio, it is well-known
that sharing encoded data is much more efficient than sharing
raw data. Thus, we utilize standard WebRTC streaming to share
the media streams. When a web application requires streams
from the peer’s I/O, the Crow API establishes the WebRTC
stream connection between the host and the peer. The callback
function for the I/O waits in the host’s JavaScript runtime until
the WebRTC stream comes from the peer, similar to the message
method for general data. WebRTC streams video and audio at
the best quality based on the Google congestion control
algorithm [11]; thus, the Crow API efficiently provides
streaming-based I/O sharing between multiple devices.

VI. IMPLEMENTATION

We implemented the Crow API as a JavaScript library for
application developers to readily import into their applications.
Additionally, we developed the Crow extension program, which
automatically applies the Crow API to existing web
applications.

A. The Crow API Library

Crow Connectivity Mechanism. We implemented the
Crow connectivity mechanism as part of the Crow API. When
web applications call switchToVirtualAPI() or respondTo
VirtualAPIRequest(), the Crow API displays GUIs to send and
receive QR codes or MousePath. Open-source JavaScript codes
were used to implement QR-based data transmission. For
MousePath, we implemented the core as described in the paper
[8] and employed open-source JavaScript codes for the required
Reed-Solomon error correction. When web applications send
data through MousePath, error correction codes are attached to
the original data. The length of the error correction is set at 20%
of the original data. As described in Section IV.B, the Crow API
also allows the peers to start device discovery by calling the

switchToVirtualAPI() function, and the hosts should respond to
the requests with the respondToVirtualAPIRequest() function.

Crow IPC. The Crow API library is compatible with web
APIs for I/Os listed in Table I. We implemented the Crow API’s
VirtualAPI objects according to the way each API works. As
stated in Section II.B, some web APIs are invoked via global
objects, while others are not. For global object–based web APIs,
such as the MediaStream API and the Geolocation API, the
VirtualAPI object has the same structure as the original global
interfaces. For Sensor APIs, which do not have global objects
but global constructors, VirtualAPI objects are generated by
constructor calls. For keyboard events, the DOM waits for them
without explicit function calls to turn the keyboard on or off.
When users click or touch DOM nodes related to keyboard
events, the web application obtains keyboard events from the
peer if the virtual API for the keyboard is set to the current
interface. For pointing devices, including the mouse, touch,
stylus pen, etc., the library forwards pointing events, such as
click/touch and drag/swipe, from the peer to the host with the
relative position where the event occurs on the screen. Finally,
the Crow API supports display by exploiting WebRTC’s screen
sharing. There are no web API functions to turn the display on
or off; thus, display sharing starts as soon as a web application
calls the switchToVirtualAPI() function to set a virtual API
object as the current interface.

B. The Crow Extension Program

Although the Crow API library helps application developers
easily exploit cross-device I/O sharing functionality, existing
web applications do not provide I/O sharing unless they are
modified with the library. We implemented the Crow extension
program, which provides cross-device I/O sharing functionality
to existing web applications by automatically injecting the Crow
API. The host runs the extension program in the browser. The
peer runs a proxy web application that delivers the I/O data to
the host. The Crow extension program provides two key
functionalities: I/O selection and automatic code injection. The
extension program presents a popup GUI that asks users which
device to use for each I/O before running the web application.
Then, the Crow extension program injects custom code into the
web application during the loading process. We developed the
Crow extension program as a Chrome extension; thus, the
extension program works on Chromium-based browsers. The
Chrome browser does not support the extension on Android, but
the Kiwi browser does. As the WebExtension API is being
standardized, this implementation is expected to work on all
browsers soon.

VII. EVALUATION

We evaluated the Crow connectivity mechanism in terms of
the amount of data required for the WebRTC connection. We
also compared the I/O sharing functionality of the Crow API
with other solutions in real environments and measured the
performance with diverse I/O devices.

A. Crow Connectivity Mechanism

To evaluate the effectiveness of two optimization techniques
(channel embedding and protocol data reduction), we measured
the length of the data sent via the Crow API’s data transmission
scheme while establishing a WebRTC video channel. For the

Fig. 8. Cross-device data synchronization.

Virtual

APIs
Proxy

Interface

Cross-device

Shared Buffer
Read data with

given frequency
Write data with

given frequency

Cross-device Data Sync.

Send dataReceive data

Message

Media Stream

measurement, we used the desktop-to-tablet configuration, and
the devices were connected to the same router. We set the
desktop and the tablet as the host and the peer, respectively.

Fig. 9 shows the measurement result. The baseline in the
figure refers to the case where no optimization techniques are
applied. For the baseline case, the length of the SDP offer and
the answer are 7,849 and 5,718 characters, respectively. QR
codes containing a large amount of data are difficult to recognize
with cameras on general mobile devices due to the codes’
complexity. Thus, previous QR-based solutions for the
serverless WebRTC connection [12], [13] use multiple QR
codes to relay the SDPs. In the case of MousePath, it takes more
than 450 s to send the 5,718-character SDP answer, which is too
long for users to wait for. We calculated the time under the
assumption that MousePath transmits 15 characters a second on
60-Hz screens and requires error correction codes, 20% of the
original data. As shown in the figure, the proposed optimization
techniques efficiently reduce the length of SDPs. For the
channel embedding, the length of the SDP offer and answer
decrease to 723 and 702 characters, respectively. If the
connectivity mechanism employs both techniques, the length of
the SDP answer is reduced to 257 characters. In this case, the
connectivity mechanism needs only one or two QR codes to
transfer an SDP offer. It takes only 20 s to forward an SDP
answer via MousePath, even taking into account the error
correction codes. This results in a 95.5% reduction compared to
the baseline. The Crow connectivity mechanism indeed provides
a practical solution.

B. I/O Sharing Functionality

Cross-I/O Coverage. To confirm that the Crow API can
provide cross-device I/O sharing, we evaluated whether it
worked well on popular web applications and compared the
Crow API’s I/O coverage with that of other solutions. For the
comparison, we selected various cross-device I/O sharing
solutions, including Android-based native solutions for general
I/O sharing, such as Rio [1], Personal Mobile Cloud (PMC) [2],
Mobile Plus (M+) [3], M2 [4], and Tap [14].

The results of the cross-I/O coverage are summarized in
Table IV. The evaluation was conducted on a host-peer
configuration, where each solution best supported cross-device
I/O sharing. For the Crow API, we used a Windows 10-based
laptop for the host and the Android 11-based Pixel 2 XL for the
peer. Chrome version 92 was used for the evaluation. The “I/O”
column in the table lists the types of I/Os tested in this
experiment. We evaluated the functionality of the Crow API
with the sample web applications listed in the “Web app”
column. For motion and light sensors, we used demo web
applications we wrote for the test because we were unable to find
popular web applications that use Sensor APIs.

As shown in the table, the Crow API supported the most
diverse types of I/Os. AirPlay [15] and Chromecast [16] were
developed for sharing audio and video, DroidCam [17] for
sharing cameras, and WO Mic [18] for sharing microphones.
These solutions support limited I/O as they were developed for
sharing specific I/Os. However, the Android-based I/O sharing
solutions show wider I/O coverage than the I/O-specific
solutions. Android-based solutions aim to provide general I/O
sharing by modifying operating systems or providing an SDK
for developing cross-device applications. Only M2 and Tap
native applications support as many I/Os as the Crow API. This
result supports the generality of the Crow API in providing
cross-device I/O sharing even as a web application.

Heterogeneity. We evaluated the functionality of the Crow
API on diverse platforms and compared the results with those
for other solutions. For the evaluation, we selected five
platforms (Android, iOS, Windows, macOS, and Linux) and
used the platforms as hosts and peers. For the devices, we used
a Pixel 2 XL smartphone for Android, an iPad Pro tablet for iOS,
an i5 laptop computer for Windows, an iMac desktop for
macOS, and an i7 desktop computer for Linux. For all cases
except the Android host and the iOS host, Chrome version 92
with the Crow extension program was used for the evaluation.
For the Android host, we used the Kiwi browser, a modified
version of Chrome that supports extensions on Android. For the
iOS host, we modified web applications with the Crow API
because no browsers support the extension on iOS. For the iOS
host and iOS peer, the evaluation was performed on the Safari
browser, which is the main browser for iOS. Note that the Safari
browser is planned to support extension programs built with
standard WebExtension API [19]; therefore, we expect the
proposed Crow extension program will work on iOS in the near
future.

Table V summarizes the results, showing that the Crow API
outperformed other solutions in supporting cross-device I/O

TABLE IV. CROSS-DEVICE I/O SHARING OF THE CROW API AND PREVIOUS SOLUTIONS.

I/O Web app Crow Air

Play

Chrome

cast

Droid

Cam

WO

Mic

Rio PMC M+ M2 Tap

Camera Zoom, WebEx, Google Duo, Google Meet, Talky, Whereby ✓ ✓ ✓ ✓ ✓ ✓ ✓

Microphone Zoom, WebEx, Google Duo, Google Meet, Talky, Whereby ✓ ✓ ✓ ✓ ✓

GPS Google Maps, OpenStreetMap, Bing Maps, Waze, Airbnb ✓ ✓ ✓ ✓

Motion and light sensors (Demo web applications) ✓ ✓a ✓a ✓a ✓ ✓

Keyboard Google Docs, Wikipedia ✓ ✓ ✓

Pointer (Mouse, touch. stylus) Google Keep, Chrome Canvas, Sketch.io, Slither.io ✓ ✓b ✓b

Speaker YouTube Music, Soundcloud ✓ ✓ ✓ ✓ ✓ ✓ ✓

Display YouTube, Netflix, Twitch, TED ✓ ✓ ✓ ✓ ✓
a Supports only accelerometers among various sensors. b Supports drag or swipe events, but cannot share the movement of mouse cursors.

Fig. 9. Message length for establishing a WebRTC video channel between
two devices.

sharing on diverse platforms. Previous solutions are inherently
limited to specific platforms because the solutions are for native
applications. AirPlay and Chromecast work only for the Apple
(iOS/macOS) and Google (Android) platforms, respectively, for
sharing display and audio. DroidCam and WO Mic were
developed for a specific host-peer configuration: desktop host
and mobile peer. Rio, PMC, M+, M2, and Tap are Android-
based solutions. M2 and Tap are designed to work on iOS but
do not work as a general solution on other platforms. Compared
to the previous solutions, the Crow API provides fully
heterogeneous cross-device I/O sharing due to its meta-platform
characteristics.

There were a few cases in which the Crow API could not
provide cross-device I/O sharing for specific I/Os, primarily
because of the browsers’ limitations. For the iOS peer, the Safari
browser and other browsers, including Chrome for iOS, do not
support Sensor APIs; thus, cross-device I/O sharing cannot be
utilized for sensors. Meanwhile, the iOS host can access the
other device’s sensors through the Crow API, although iOS does
not support Sensor APIs. This is because web API functions are
executed not on the host but on the peer where browsers support
Sensor APIs unless the peer is not iOS. As the Sensor APIs are
being standardized, we hope that the Safari browser will support
Sensor APIs so that web applications will be able to provide
cross-device I/O sharing functionality even on an iOS peer.

C. Performance

I/O Sharing Overhead. We evaluated the performance of
the Crow API in providing cross-device I/O sharing. We first
assessed the overhead of the cross-device function call by
measuring the time from when the web API functions were
called until the first I/O data arrived. In this evaluation, the host
was the Windows 10-based laptop with an Intel i5-8265U CPU,
and the peer was the Android 10-based Pixel 2 XL smartphone.
The time measurement was performed in the 50-Mbps Wi-Fi
environment, which is a typical environment for users to
experience cross-device I/O sharing with their devices.

Fig. 10 shows the measurement results of the Crow API
overhead in providing cross-device I/O sharing functionality for
each I/O. Each bar in the figure represents the average time of
100 measurements. The overhead was almost constant, with an
average of 86.3 ms, except for the camera. This overhead is
small enough to barely affect the web application’s
functionalities and the overall user experience. We further
analyzed the cause of the overhead and found that it was mostly

caused by the round-trip time (RTT) of the WebRTC data
channel. The measured RTT was about 81 ms, similar to results
found in previous research [20]. The actual processing time for
the Crow API code was at most 5 ms, which has a trivial effect
on the performance. For the camera, the overhead was about 111
ms which is relatively larger than that of the other I/O. This
additional overhead comes from establishing the WebRTC
stream connection, which is necessary for the Crow API to share
stream-based I/O between devices. Meanwhile, the overhead for
the microphone, another stream-based I/O, is similar to that of
the other I/O because the Crow API establishes the WebRTC
stream connection while waiting for the peer’s data which come
through the WebRTC data channel. Establishing the WebRTC
stream connection for audio took less time than the WebRTC
data channel’s RTT between the host and the peer.

Other I/Os (such as the keyboard, speaker, and display) are
not included in the figure because there are no comparison
baselines: there are no web API functions to turn these I/Os on.
For these I/Os, the performance of the Crow API depends
heavily on the WebRTC’s performance. Because the WebRTC
data channel is currently the only option for exchanging data
between web applications without a third-party server, this
overhead is unavoidable for the Crow API. Therefore, the
overall performance of the proposed API depends on the
implementation quality of WebRTC’s data channel.

Camera Sharing. We specifically conducted a performance
evaluation of camera sharing because video-based applications
are commonplace. Normally, cross-device camera sharing uses
a non-trivial amount of resources; thus, previous solutions,
especially Android-based solutions [1]–[3], showed significant
performance degradation for sharing cameras. The existing
solutions share raw camera data with the memory-sharing
approach; in contrast, the Crow API uses compressed data with
WebRTC. In this evaluation, we used the same host–peer
configuration as previously. In addition, we used another peer,
the Galaxy S9 Plus, which provides a better computation
capability than the Pixel 2 XL. We set the peer’s camera
resolution to 360p, 480p, 720p, and 1080p, and the camera’s
frames per second (FPS) to 30 FPS. We used the VP8 and VP9
codecs, which are default codecs used by WebRTC. The VP9
codec is known to compress videos more efficiently than the
VP8 codec but demands more CPU.

Fig. 11 shows the bitrate traces of the shared videos
measured up to 80 s after cross-device camera sharing starts. As
shown in the figure, the bitrates stabilize after 40 s and converge
to specific values. A previous study on WebRTC video
streaming [11] reported fixed 2.5-Mbps bitrates at 720p or
higher resolutions on desktop computers. The study also showed
that mobile devices were not able to stream 2.5-Mbps videos due
to the devices’ low performance. However, we experimentally

TABLE V. CROSS-DEVICE I/O SHARING ON DIVERSE PLATFORMS.

Platform Crow Air

Play

Chrome

cast

Droid

Cam

WO

Mic

Rio PMC M+ M2 Tap

Android host ✓ ✓ ✓ ✓ ✓ ✓ ✓

iOS host ✓a ✓ ✓

Windows host ✓ ✓ ✓ ✓

macOS host ✓

Linux host ✓ ✓ ✓

Android peer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

iOS peer ✓b ✓ ✓ ✓ ✓

Windows peer ✓

macOS host ✓ ✓

Linux host ✓ ✓
a The Crow extension does not work, but the Crow API works.

 b The Crow API cannot use Sensor APIs due to the lack of browser support.

Fig. 10. Overhead for calling the peer’s web API functions with the Crow API.

found that current mobile devices transmit 2.5-Mbps videos
without any problems because of the performance improvement
in newer mobile devices. We confirmed that the output
resolutions are not degraded for almost all cases. Only in the
case of the Pixel 2 XL with the VP9 codec, the 1080p resolution
decreased to 540p because the Pixel 2 XL does not have enough
performance to support the VP9 codec at a resolution of 1080p.
We further evaluated FPS for each case. Fig. 12 shows the
results. We found that the FPS traces converge to 30 for almost
all cases, aside from the case of the Pixel 2 XL with the 1080
resolution and the VP9 codec.

VIII. RELATED WORK

Previous researchers have tried to exploit the potential of
using multiple devices for improved user experiences. In
particular, various techniques have been proposed for
distributing GUIs or sharing I/Os on multiple devices. Many
practical cross-device solutions have been developed especially
for remote desktop environments, such as Virtual Network
Computing (VNC) [21], TeamViewer [22], AnyDesk [23], and
Chrome Remote Desktop [24]. The tools exploit a specific I/O
set—display, mouse, keyboard, and speaker—that is necessary
for remote desktop processing. The tools mandate the use of
display sharing, even if a user wishes to utilize only a remote
keyboard or other simple I/Os. Clearly, these tools are limited in
providing general-purpose cross-device I/O sharing.

In addition, various solutions for cross-device GUI
distribution to multiple devices have been proposed.
Chromecast [16] allows users to cast video- and audio-related
GUIs of applications to other devices. CollaDroid [25] and
UIWear [26] help developers modify their Android applications,
whose GUIs are originally designed for single-device
environments, to cross-device GUI versions. Panelrama [27],
Liquid.js [28], and AdaM [29] help developers implement web
applications that provide cross-device GUI functionality.
Recently, work has been conducted to provide cross-device GUI
functions without reauthoring by developers. FLUID, FLUID-
XP, and PRUID [30]–[32] enable users to distribute Android
applications’ GUIs to multiple devices. XDBrowser [33], [34]
provides a cross-device GUI solution for web applications
without reauthoring. Cross-device GUI distribution provides
interesting use cases, but the technique focuses on fine-grained
display sharing, which is different from the goal of the Crow
API, which is general I/O sharing.

To provide cross-device I/O sharing functionality, many
efforts have been made especially for native applications. The
solutions fall into three categories. First, applications have been
developed for sharing specific I/Os. IP Webcam [35] and
DroidCam [17] allow users to employ a smartphone’s camera on
Windows desktop computers, and WO Mic [18] allows users to
use smartphones’ microphones. These applications lack
generality in providing cross-device I/O sharing. Second, the

OS-level approach has been proposed for cross-device I/O
sharing. Rio [1] implements cross-device I/O sharing through a
split-stack kernel architecture that intercepts Linux kernel
operations. Personal Mobile Cloud [2], Mobile Plus [3], and
Jong et al. [36] introduced solutions that work at the Android
framework layer. M2 [4] achieved cross-device I/O sharing
between iOS and Android applications by leveraging I/O
abstractions. These OS-specific system-level solutions are
unable to run on diverse platforms, leading to the platform-
dependency problem. Finally, researchers have proposed APIs
or SDKs that help developers adopt cross-device I/O sharing
functionality. Tap [14] employs a cross-device I/O API for
Android and iOS applications. However, native applications
developed with the API should run on specific platforms such as
Android or iOS; thus, this API approach still cannot solve the
platform-dependency issue.

Overall, previous solutions for cross-device I/O sharing have
limited I/O support or platform-dependency problems. In
contrast, the Crow API provides cross-device I/O sharing
running on diverse platforms by exploiting web applications’
meta-platform characteristics. In fact, there was a solution for
cross-device I/O sharing on web applications, called Gibraltar
[37]. Gibraltar exposed I/O devices to web pages via an HTTP-
enabled device server that interacts with I/O devices on behalf
of web pages. Gibraltar was a pre-WebRTC system; thus, it
required the host and peers to run device servers and know each
server’s IP address. On the other hand, Crow API is compatible
with modern web standards, such as WebRTC and web APIs,
and provides I/O sharing functionalities without any additional
server programs.

IX. CONCLUSION

To the best of our knowledge, the Crow API is the first
attempt to provide general-purpose cross-device I/O sharing in
web applications. Based on the meta-platform characteristics of
web applications, the Crow API addresses the platform-
dependency issue of native application-based solutions for
cross-device I/O sharing. Recently, new web APIs have been
proposed and standardized for various hardware, such as the
Bluetooth API, NFC API, and Human Interface Device (HID)
API. The Crow API is designed to be extensible to these new
APIs. We hope that it becomes a standard for web APIs and
opens up a new direction for general cross-device I/O sharing
for web applications.

ACKNOWLEDGMENTS

This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (No. 2018-0-
00532, Development of High-Assurance (≥EAL6) Secure
Microkernel).

(a) Pixel 2 XL (b) Galaxy S9 Plus

Fig. 11. Bitrate traces.

(a) Pixel 2 XL (b) Galaxy S9 Plus

Fig. 12. FPS traces.

REFERENCES

[1] Ardalan Amiri Sani, Kevin Boos, Min Hong Yun, and Lin Zhong, “Rio:
A System Solution for Sharing i/o between Mobile Systems,” In Proc.
12th Annu. Int. Conf. Mob. Syst. Appl. Serv. (MobiSys ’14), 2014, pp.
259–272.

[2] Yong Li and Wei Gao, “Interconnecting heterogeneous devices in the
personal mobile cloud,” In IEEE INFOCOM 2017 - IEEE Conf. Comput.
Commun., 2017, pp. 1–9.

[3] Sangeun Oh, Hyuck Yoo, Dae R Jeong, Duc Hoang Bui, and Insik Shin,
“Mobile Plus: Multi-device Mobile Platform for Cross-Device
Functionality Sharing,” In Proc. 15th Annu. Int. Conf. Mob. Syst. Appl.
Serv. (MobiSys ’17), 2017, pp. 332–344.

[4] Naser AlDuaij, Alexander Van’t Hof, and Jason Nieh, “Heterogeneous
Multi-Mobile Computing,” In Proc. 17th Annu. Int. Conf. Mob. Syst.
Appl. Serv. (MobiSys ’19), 2019, pp. 494–507.

[5] “Accessing hardware devices on the web,” https://web.dev/devices-
introduction/.

[6] “Progressive web apps,” https://web.dev/progressive-web-apps/.

[7] “WebRTC,” https://webrtc.org/.

[8] Zhiwei Wang, Qianyi Huang, Yihui Yan, Haitian Ren, Yizhou Zhang, and
Zhice Yang, “MousePath: Enhancing PC Web Pages through Smartphone
and Optical Mouse,” In 2021 IEEE Int. Conf. Pervasive Comput.
Commun. (PerCom 2021), 2021, pp. 1–7.

[9] “Permissions API - Web APIs | MDN,” https://developer.mozilla.org/en-
US/docs/Web/API/Permissions_API.

[10] “Annotated example SDP for WebRTC,” https://tools.ietf.org/id/draft-
ietf-rtcweb-sdp-08.html#rfc.section.3.

[11] Bart Jansen, Timothy Goodwin, Varun Gupta, Fernando Kuipers, and Gil
Zussman, “Performance Evaluation of WebRTC-based Video
Conferencing,” ACM SIGMETRICS Perform. Eval. Rev., vol. 45, no. 3,
pp. 56–68, 2018.

[12] “GitHub - TomasHubelbauer/qr-channel,” https://github.com/Tomas
Hubelbauer/qr-channel.

[13] “Serverless WebRTC using QR codes,” https://franklinta.com/
2014/10/19/serverless-webrtc-using-qr-codes/.

[14] Naser AlDuaij and Jason Nieh, “Tap: An App Framework for
Dynamically Composable Mobile Systems,” In Proc. 19th Annu. Int.
Conf. Mob. Syst. Appl. Serv. (MobiSys ’21), 2021, pp. 336–349.

[15] “AirPlay - Apple,” https://www.apple.com/airplay/.

[16] “Chromecast,” https://store.google.com/product/chromecast.

[17] “DroidCam,” https://www.dev47apps.com/.

[18] “WO Mic - FREE microphone,” https://wolicheng.com/womic/.

[19] “Apple brings Safari web browser extensions to iPhone and iPad with iOS
15 - 9to5Mac,” https://9to5mac.com/2021/06/07/apple-brings-safari-
web-browser-extensions-to-iphone-and-ipad-with-ios-15/.

[20] Kiran Jadhav, D. G. Narayan, and Mohammed Moin Mulla,
“Performance Evaluation of WebRTC for Peer-to-Peer Communication,”
Lect. Notes Electr. Eng., vol. 735, pp. 455–466, 2021.

[21] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and
Andy Hopper, “Virtual network computing,” IEEE Internet Comput., vol.
2, no. 1, pp. 33–38, 1998.

[22] “TeamViewer: The Remote Desktop Software,” https://www.teamviewer
.com/en-us/.

[23] “AnyDesk,” https://anydesk.com/en.

[24] “Chrome remote desktop,” https://remotedesktop.google.com/access/.

[25] Jiahuan Zheng, Xin Peng, Jiacheng Yang, Huaqian Cai, Gang Huang,
Ying Zhang, et al., “CollaDroid: Automatic Augmentation of Android
Application with Lightweight Interactive Collaboration,” In Proc. 2017
ACM Conf. Comput. Support. Coop. Work Soc. Comput. (CSCW ’17),
2017, pp. 2462–2474.

[26] Jian Xu, Qingqing Cao, Aditya Prakash, Aruna Balasubramanian, and
Donald E Porter, “UIWear: Easily Adapting User Interfaces for Wearable
Devices,” In Proc. 23rd Annu. Int. Conf. Mob. Comput. Netw. (MobiCom
’17), 2017, pp. 369–382.

[27] Jishuo Yang and Daniel Wigdor, “Panelrama: Enabling Easy
Specification of Cross-Device Web Applications,” In Proc. SIGCHI
Conf. Hum. Factors Comput. Syst. (CHI ’14), 2014, pp. 2783–2792.

[28] Andrea Gallidabino and Cesare Pautasso, “The Liquid User Experience
API,” In Companion Proc. Web Conf. 2018 (WWW ’18), 2018, pp. 767–
774.

[29] Seonwook Park, Christoph Gebhardt, Roman Rädle, Anna Maria Feit,
Hana Vrzakova, Niraj Ramesh Dayama, et al., “AdaM: Adapting Multi-
User Interfaces for Collaborative Environments in Real-Time,” In Proc.
2018 CHI Conf. Hum. Factors Comput. Syst. (CHI ’18), 2018, pp. 1–14.

[30] Sangeun Oh, Ahyeon Kim, Sunjae Lee, Kilho Lee, Dae R. Jeong, Steven
Y. Ko, et al., “FLUID: Flexible User Interface Distribution for Ubiquitous
Multi-Device Interaction,” In 25th Annu. Int. Conf. Mob. Comput. Netw.
(MobiCom ’19), 2019, pp. 1–16.

[31] Sunjae Lee, Hayeon Lee, Hoyoung Kim, Sangmin Lee, Jeong Woon
Choi, Yuseung Lee, et al., “FLUID-XP: Flexible User Interface
Distribution for Cross-Platform Experience,” In Proc. 27th Annu. Int.
Conf. Mob. Comput. Netw. (MobiCom ’21), 2021, pp. 762–774.

[32] Menglong Cui, Mingsong Lv, Qingqiang He, Caiqi Zhang, Chuancai Gu,
Tao Yang, et al., “PRUID: Practical User Interface Distribution for Multi-
surface Computing,” In Proc. - Des. Autom. Conf. (DAC ’21), 2021, pp.
679–684.

[33] Michael Nebeling and Anind K Dey, “XDBrowser: User-Defined Cross-
Device Web Page Designs,” In Proc. 2016 CHI Conf. Hum. Factors
Comput. Syst. (CHI ’16), 2016, pp. 5494–5505.

[34] Michael Nebeling, “XDBrowser 2.0: Semi-Automatic Generation of
Cross-Device Interfaces,” In Proc. 2017 CHI Conf. Hum. Factors
Comput. Syst. (CHI ’17), 2017, pp. 4574–4584.

[35] “IP Webcam - Apps on Google Play,” https://play.google.com/store/apps/
details?id=com.pas.webcam&hl=en_US&gl=US.

[36] Yu Wen Jong, Pi Cheng Hsiu, Sheng Wei Cheng, and Tei Wei Kuo, “A
semantics-aware design for mounting remote sensors on mobile systems,”
In Proc. 53rd Annu. Des. Autom. Conf. (DAC ’16), 2016, pp. 1–6.

[37] Kaisen Lin, David Chu, James Mickens, Li Zhuang, Feng Zhao, and Jian
Qiu, “Gibraltar: Exposing Hardware Devices to Web Pages Using
{AJAX},” In 3rd USENIX Conf. Web Appl. Dev. (WebApps 12), 2012,
pp. 75–87.

