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Abstract—Although cross-device input/output (I/O) sharing is 
useful for users who own multiple computing devices, previous 
solutions had a platform-dependency problem. The meta-platform 
characteristics of web applications could provide a viable solution. 
In this paper, we propose the Crow application programming 
interface (API) that allows web applications to access other 
devices’ I/O through standard web APIs without modifying 
operating systems or browsers. The provision of cross-device I/O 
should resolve two key challenges. First, the web environment 
lacks support for device discovery when making a device-to-device 
connection. This requires a significant effort for developers to 
implement and maintain signaling servers. To address this 
challenge, we propose a serverless Crow connectivity mechanism 
using devices’ I/O-specific communication schemes. Second, 
JavaScript runtimes have limitations in supporting cross-device 
inter-process communication (IPC). To solve the problem, we 
propose a web IPC scheme, called Crow IPC, which introduces a 
proxy interface that relays the cross-device IPC connection. Crow 
IPC also provides a mechanism for ensuring functional 
consistency. We implemented the Crow API as a JavaScript 
library with which developers can easily develop their 
applications. An extensive evaluation showed that the Crow API 
provides cross-device I/O sharing functionality effectively and 
efficiently on various web applications and platforms. 

Index Terms—cross-device I/O sharing, web application, 
mobile web, WebRTC, application programming interface (API). 

I. INTRODUCTION 

With the widespread use of diverse mobile devices, users 
commonly own multiple computing devices, ranging from 
traditional desktop computers to wearable devices. Easy access 
to multiple devices has brought attention to cross-device 
input/output (I/O) sharing techniques, which allow user 
applications to utilize other devices’ I/O whose functionality 
was originally developed for single-device environments. These 
techniques offer useful experiences in two ways. First, I/O 
sharing is helpful when a device does not have an appropriate 
I/O for an application. For example, suppose a user is running a 
video-conferencing application on a desktop computer with no 
camera. With cross-device I/O sharing, the user can access his 
or her smartphone camera instead, as shown in Fig. 1(a). 
Second, I/O sharing allows users to access more convenient I/O 
options. Assume that a user is using a virtual keyboard to edit 
texts on a smartphone. Using the virtual keyboard may degrade 
the user experience because the keyboard takes up certain areas 
of the screen. As illustrated in Fig. 1(b), the user would utilize 
the entire screen if he or she used a desktop’s physical keyboard. 

Cross-device I/O sharing can be provided via native OS 
support or via application-level protocols. Previous solutions 
mostly focused on the native OS support [1]–[4]. However, OS 
modifications are difficult and would hurt the portability of apps 
that rely on a particular OS’s functionality. Application-level 
approaches shift the development burden to application 

programmers, forcing them to translate the underlying platform 
idiosyncrasies into platform-neutral abstractions. In this regard, 
web applications can help the programmers alleviate the burden 
due to the “meta-platform” characteristic. Modern web browsers 
provide platform-neutral abstractions of I/O devices, such as 
cameras, microphones, and sensors, with the standard web APIs 
[5]. In addition, current browsers support progressive web 
applications (PWAs) [6], which provide native application-like 
user experiences. The meta-platform characteristic of web 
applications offers great opportunities for cross-device I/O 
sharing on heterogeneous devices. 

Despite this potential, cross-device I/O sharing in web 
applications has not been widely adopted because the approach 
requires considerable efforts in reauthoring applications to 
provide such functionalities. Thus, a new API mitigating the 
efforts would be greatly helpful. Two practical challenges exist 
in designing such an API. First, the web environment lacks 
support for device discovery when making a device-to-device or 
peer-to-peer connection. Web Real-Time Communication 
(WebRTC) [7] is practically the only way to support 
communications in web applications, but signaling servers are 
explicitly required for the operations. Second, the inherent 
characteristics of JavaScript runtime make it difficult for web 
applications to use other devices’ I/O. Cross-device I/O sharing 
requires inter-process communication (IPC) functionality 
between devices. However, JavaScript runtimes provide no 
direct IPC to external processes. 

In this paper, we propose an API, called the Crow API, to 
help web developers provide cross-device I/O sharing in web 
applications. By simply adding a few lines of Crow API code to 
the application, web developers can easily provide I/O sharing 
functionality in their applications. For practical and efficient 
device discovery and connectivity, we propose the Crow 
connectivity mechanism, which allows web applications to 
establish WebRTC connections without a signaling server. The 
mechanism basically exploits quick response (QR) codes and 
MousePath [8] to establish connections covering various types 
of computing devices. To address JavaScript’s inherent 
limitations for providing cross-device I/O, the API provides a 
cross-device IPC mechanism, called the Crow IPC. The new 
IPC enables JavaScript runtimes to communicate with browser 
processes on other devices and synchronizes I/O data between 
devices. 

  
(a) Camera sharing (b) Keyboard sharing 

Fig. 1. Cross-device I/O sharing. 
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We implemented the Crow API as a JavaScript library so 
that web developers can readily import it into their applications 
with minimum effort. Additionally, we developed a browser 
extension that automatically inserts the Crow API into web 
applications. With this feature, cross-device I/O sharing 
functionality can be implemented in existing web applications. 

II. BACKGROUND 

We describe the workflow of web applications and web APIs 
related to I/Os. Then, we discuss several challenges in 
supporting cross-device I/O sharing in web applications. 

A. WebRTC 

WebRTC is the standard and only way to provide peer-to-
peer communications in web applications. WebRTC especially 
aims to provide audio and video communication. To make 
WebRTC connections between two peers, the peers exchange 
their session description protocols (SDPs), which include 
diverse information needed to establish WebRTC connections. 
The SDP exchange is bidirectional—a peer (caller) sends an 
SDP offer to another peer (callee), then the caller receives an 
SDP answer from the callee. The WebRTC API does not include 
peer discovery or device discovery mechanisms; thus, signaling 
servers are necessary to discover other devices and exchange 
SDPs with the devices before the WebRTC connection is 
established. 

B. Web APIs for I/O Devices 

The overall flow of a web application running on a modern 
web browser is illustrated in Fig. 2. The single-threaded 
renderer process is built up with a JavaScript runtime and a 
rendering engine. JavaScript codes are interpreted by a browser 
and executed in a JavaScript runtime. The JavaScript runtime 
cannot make a direct IPC connection to other processes. Instead, 
the native C++ codes of the rendering engine establish the IPC 
connection to the browser process. When the JavaScript codes 
call web APIs to exploit various functionalities of the underlying 
operating systems, the rendering engine forwards the API call to 
the browser process through the IPC. The browser process 
handles I/O functionality and returns I/O data to the rendering 
engine. JavaScript codes usually have callback functions for the 
I/O requests. Upon receiving the I/O data, a JavaScript runtime 
inserts the callback functions into the runtime’s queue. The 
event loop of the runtime periodically checks whether the call 
stack is empty, and if it is, the loop takes a runnable callback 
function from the queue and then pushes the function into the 
call stack. 

Table I lists the standard web APIs related to I/Os. Each web 
API has different usage semantics. For instance, the Geolocation 

API, the MediaStream API, and UIEvent interfaces are handled 
by global objects. Sensor APIs are accessed through non-global 
objects; therefore, web applications should create relevant 
objects by calling constructors. As summarized in Table I, I/O 
data fall into three types: general, periodic, and media stream. 
General data indicate a single I/O data response for an I/O 
request, while periodic data refer to a continuous response to an 
I/O request. Media stream–type data are video or audio, which 
is handled as encoded data. 

C. Challenges 

The standard web APIs provide a uniform user experience 
for various operating systems or browsers. This meta-platform 
characteristic implies that web applications potentially provide 
cross-device I/O sharing, in principle, even in heterogeneous 
environments. Despite this potential, conventional web 
applications barely support cross-device I/O sharing 
functionalities because of the non-trivial amount of development 
efforts. One approach for alleviating developers’ efforts is to 
provide a new API for cross-device I/O sharing. Two key 
challenges should then be resolved to design such an API. 

Challenge 1. The web environment lacks direct support for 
device discovery. As described in Section II.A, WebRTC does 
not provide functionality for device discovery. Moreover, web 
browsers do not support device discovery mechanisms readily 
used by native applications, such as Bluetooth advertising, Wi-
Fi direct, and multicast domain name service (mDNS). 
Exploiting signaling servers is practically the only way to handle 
device discovery in web applications. Apart from original web 
servers, Web developers should implement and maintain 
signaling servers additionally. Moreover, developers should 
write codes for their web applications to communicate with the 
signaling servers. This results in significant development efforts 
for device discovery. Therefore, a new API is needed to mitigate 
the development efforts, but its provisioning is challenging due 
to many practical constraints in device usage. 

Challenge 2. JavaScript’s inherent characteristics make it 
difficult for web applications to use other devices’ I/O. 
JavaScript runtimes lack support for general-purpose IPC 
functionality. As described in Section II.B, a web application 
needs IPC connections between the renderer process and the 
browser process to use I/O. Because JavaScript runtimes are 
unable to establish direct IPC connections with the browser 
process, the runtimes require support from the C++ codes of the 
rendering engine to communicate with the browser process. 
Unfortunately, the rendering engine was developed for single-
device environments. The rendering engine of current browsers 
makes IPC connections only to the browser process in the same 
browser, and cannot establish direct IPC connections to other 
device’s browser processes. In addition, the JavaScript language 
does not support direct memory management because 
JavaScript allocates memory automatically. Previous work on 
cross-device I/O sharing in Android applications [1]–[3] 

 
Fig. 2. Web workflow from the I/O perspective. 

TABLE I.  WEB APIS FOR I/O DEVICES. 

Web API I/O device Global I/O data type 

Geolocation API Global positioning system (GPS) Yes 
General/ 
Periodic data 

MediaStream API Camera, microphone, speaker Yes Media stream 

Sensor APIs Accelerometer, light sensor, etc. No Periodic data 

UIEvent Interface Keyboard, mouse, touch, etc. Yes General data 
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introduced various memory-sharing techniques for 
synchronizing data. However, due to the inherent limitation of 
JavaScript in accessing memory areas, ensuring functional 
consistency is challenging when synchronizing data for cross-
device I/O. 

III. CROW API OVERVIEW 

We propose the Crow API to mitigate programming efforts 
for supporting device discovery and I/O sharing functionality 
without modifying OSs or browsers. The overall workflow of 
cross-device I/O-enabled web applications is discussed below, 
followed by a detailed description of the API functions. 

A. Workflow 

The workflow and overall architecture of the Crow API are 
illustrated in Fig. 3. The primary device running a web 
application is defined as the host, and the secondary device 
delivering I/O functionality to the host is the peer. For cross-
device I/O-enabled web applications, developers should 
implement host and peer applications using the Crow API. The 
architecture supports multiple peers for a single host; however, 
to keep the descriptions brief, throughout the paper, we explain 
the architecture based on a one-to-one host–peer configuration. 

The Crow API includes three operational phases: (1) the 
signaling phase, (2) the I/O sharing phase, and (3) the 
disconnection phase. First, in the signaling phase, the API 
displays specific graphical user interfaces (GUIs) on the host 
and the peer. Users handle the GUIs for the host to discover the 
peer and establish WebRTC connections to the peer. This GUI-
based signaling is used only for the first connection between the 
host and the peer to minimize the users’ engagement. Then, 
during the I/O sharing phase, users exploit the peer’s I/O while 
the main parts of the web applications run on the host. Finally, 
in the disconnection phase, the WebRTC connection stops, and 
web applications perform specific operations defined by the 
developers. Note that current browsers require web applications 
to acquire proper permissions for each I/O before using the I/O 
[9]. Crow API follows the browser’s permission policy related 
to I/O usage. 

The Crow API provides solutions to enable the workflow. 
For the connection phase, the Crow API handles the device 
discovery issue related to signaling servers. We propose a 
serverless WebRTC signaling scheme for Crow connectivity. 

The GUIs displayed by the Crow API are designed under the 
connectivity mechanism. Section IV explains the scheme in 
detail. For the I/O sharing phase, the issues regarding 
JavaScript’s lack of general-purpose IPC and direct memory 
management are handled adequately. We propose the Crow IPC 
mechanism through which the Crow API communicates 
transparently with other devices’ browser processes. The Crow 
IPC is detailed in Section V. 

B. Developer API 

The Crow API functions are summarized in Table II. Fig. 4 
shows a sample code of a web application that uses the Crow 
API to retrieve GPS data from a peer. In this example, the host 
and the peer are a desktop and a smartphone, respectively. A key 
goal of the Crow API design is to provide simplicity of usage. 
By simply adding a few lines of the Crow API codes, web 
developers can provide device discovery and I/O sharing 
functionalities for their web applications. 

Signaling Phase. The Crow API provides two functions for 
the signaling phase: switchToVirtualAPI() and respondTo
VirtualAPIRequest(). On the host, web applications call 
switchToVirtualAPI() and pass an argument (i.e., the I/O name 
to use from the peer) to the function. On the peer, 
respondToVirtualAPIRequest() is used to respond to the host’s 
request. The signaling process caused by these functions 
depends on whether it is the first signaling between the host and 
the peer. If it is, the functions display the GUI for making a 
WebRTC channel on the host and the peer. Otherwise, the host 
and the peer make WebRTC channels without the GUI, which 
is possible with the channel embedding described in Section 
IV.B. 

I/O Sharing Phase. Cross-device I/O-enabled web 
applications use the same standard web API functions to get the 
I/O data from the peer, even after the Crow API is applied to the 
applications. For example, web applications originally use the 
getCurrentPosition() function to obtain the host’s GPS data. 
Web applications use the same function to obtain the peer’s GPS 
data. The difference is whether the Crow API functions are 
called during the connection phase. To transparently access the 
peer’s GPS data, the Crow API introduces virtual APIs. The API 
calls for the peer’s I/O are forwarded to the virtual API objects 
instead of the original web APIs. The virtual APIs communicate 
with the peer’s browser processes through the Crow IPC. 

 
Fig. 3. The workflow and architecture of the Crow API. 

TABLE II.  THE CROW API. 

Function Parameters Return 

switchToVirtualAPI()a I/O name {Host, Peer}Descriptor 

switchToOriginalAPI()a I/O name Void 

respondToVirtualAPIRequest()a Void {Host, Peer}Descriptor 

addDisconnectionHandler()b Callback function Handler ID 

removeDisconnectionHandler()b Handler ID Void 
a Static Crow API method. b {Peer, Host}Descriptor member 

let peer = await Crow.switchToVirtualAPI(“GPS”); // (1) Signaling 
navigator.geolocation.getCurrentPosition(…); // (2) I/O Sharing 
peer.addDisconnectionHandler((e) => {…}); // (3) Disconnection 
Crow.switchToOriginalAPI(“GPS”); 

(a) Host 

let host = await Crow.respondToVirtualAPIRequest(); 
host.addDisconnectionHandler((e) => {…}); 

(b) Peer 
Fig. 4. Sample code with the Crow API. 
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Disconnection Phase. The connection between the host and 
the peer terminates upon the user’s intention or network 
intermittency. To handle cases where web applications wish to 
stop the connections, the Crow API provides the switchTo
OriginalAPI() function. For dealing with unintended network 
intermittency, the Crow API provides two functions: add
DisconnectionHandler() and removeDisconnectionHandler(). 

IV. CROW CONNECTIVITY MECHANISM 

The Crow connectivity mechanism enables web applications 
to discover other devices without a signaling server, and 
establish WebRTC connections directly to the devices. For the 
serverless WebRTC signaling, we propose a signaling scheme 
through which web applications exchange SDPs. Moreover, we 
provide techniques for optimizing the connectivity mechanism. 

A. Serverless Signaling Scheme 

Establishing WebRTC connections requires web 
applications to exchange SDPs. The Crow API’s serverless 
signaling scheme is specifically designed to allow web 
applications to discover other devices and exchange SDPs 
without signaling servers. The signaling scheme should employ 
device discovery and data transmission functionalities for web 
applications. The scheme also aims to accommodate a wide 
range of computing devices, such as desktops, laptops, tablets, 
and smartphones. 

To develop the serverless signaling scheme, we evaluated 
various options listed in Table III. The methods broadly fall into 
two categories: radio frequency (RF)-based schemes and 
display-based schemes. The RF-based approach includes 
Bluetooth (BT) and near-field communication (NFC), which are 
commonly used in native applications. Unfortunately, the RF-
based methods are not suitable for the Crow API’s signaling 
scheme because the relevant APIs do not support low-level 
operations such as device discovery—an essential feature for 
signaling. Furthermore, desktop computers generally do not 
support RF-based schemes. The display-based schemes send 
data by encoding the data and exposing the encoded data on 
display screens. QR codes and MousePath [8] belong to this 
category. QR codes are widely used for display-to-camera 
communication. MousePath was proposed for display-to-mouse 
communication. The scheme sends data by displaying the 
movement of textures on the display screen and receives the data 
by sensing movement with the optical mouse. The display-based 
schemes have advantages compared to the RF-based schemes. 
First, the display-based approach is fully compatible with web 
applications. Web applications can use and control screens, 
cameras, and mouses with virtually no constraints. Second, the 
display-based approach does not necessitate a complicated 
method for device discovery, such as Bluetooth advertising. 
Device discovery of the display-based approach just relies on 
users—the devices exchange data under physical proximity. 

Third, the display-based approach has broad coverage of devices 
because computing devices have display screens as basic output 
devices. 

The Crow API’s signaling scheme utilizes the display-based 
approach. Fig. 5 illustrates the data transmission of the Crow 
API’s signaling scheme. The data transmission which is 
necessary for SDP exchange consists of a sender and a receiver. 
As shown in Table III, each method does not provide full 
coverage, especially in terms of receivers. The signaling 
scheme, therefore, does not rely solely on a single 
communication method; instead, the proposed scheme combines 
the two methods, QR codes and MousePath, to compensate for 
the coverage constraints of each method. When users wish to 
send data, the sender encodes the data into the QR codes or the 
MousePath codes and displays the codes on the screen. The 
receiver acquires the codes with the camera or the optical mouse, 
and decodes the codes into the original data. 

This combination makes it possible for the serverless 
signaling scheme to support various peer-to-peer configurations. 
Note that WebRTC connection needs bidirectional SDP 
exchanges, as described in Section II.A. The computing devices 
listed in Table III fall into two groups: (1) mouse-equipped 
devices, such as desktops, and (2) camera-equipped devices 
such as laptops, tablets, and smartphones. For connections 
between two mouse-equipped devices, both devices use 
MousePath to transmit data. For connections between two 
camera-equipped devices, the devices exchange data through 
QR codes. For connections between mouse- and camera-
equipped devices, camera-equipped devices send data through 
MousePath, while mouse-equipped devices transmit data via QR 
codes. 

B. Optimization 

The display-based approach requires end-users to cope with 
cameras or optical mouses by themselves. Considering the 
amount of SDP data and data throughput of the display-based 
schemes, users may have to spend a substantial amount of time 
making a WebRTC connection, leading to a poor user 
experience. We propose three optimization techniques for 
minimizing user engagement: channel embedding, protocol data 
reduction, and prioritization. Fig. 6 shows the overall flow of the 
connectivity mechanism with the proposed techniques. 

Channel Embedding. The idea of the channel embedding is 
to embed WebRTC media channels or other data channels into 
WebRTC data channels, as described in Fig. 6. There are two 
types of WebRTC channels: data channels and media channels. 
Data channels are used for exchanging text messages between 

TABLE III.  VARIOUS OPTIONS FOR SERVERLESS SIGNALING. 

 Sender Receiver 

BT NFC QR MousePath BT NFC QR MousePath 

Desktop   ✓ ✓    ✓ 

Laptop ✓a  ✓ ✓ ✓a  ✓  

Tablet ✓a ✓a ✓ ✓ ✓a ✓a ✓  

Smartphone ✓a ✓a ✓ ✓ ✓a ✓a ✓  
a Device discovery is possible on native apps; while not on web apps. 

 
Fig. 5. The data transmission of the Crow API’s signaling scheme. 
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devices, while media channels are used for sharing videos or 
audio. The SDPs for media channels include various types of 
information, such as codecs, bitrates, etc.; thus, the length of the 
SDPs for the media channels is significantly longer than that of 
data channels. When web applications want to make media 
channels, the Crow connectivity mechanism first establishes a 
WebRTC data channel through the display-based data 
transmission schemes, and then the SDPs for the media channel 
are transmitted through the data channel. With this scheme, the 
amount of data sent is significantly reduced when making media 
channels, and so is user involvement. Channel embedding is also 
used when the host and the peer make additional channels for 
I/O sharing. If the host and the peer already have a data channel 
between them, the extra call to switchToVirtualAPI() does not 
require user involvement for the display-based signaling. The 
host and the peer make WebRTC channels via the data channel 
established by the first call to switchToVirtualAPI(). 

Protocol Data Reduction. Protocol data reduction 
minimizes the time taken for the Crow API’s signaling scheme 
to send data by removing the redundant parts between an SDP 
offer and an SDP answer. The offer and the answer contain 
similar data because they are based on the same structure [10]. 
After receiving the SDP offer from the host, the peer sends the 
data to the host with the redundant parts removed in the protocol. 

Prioritization between Data Transmission Schemes. For 
connections between mouse- and camera-equipped devices, 
where both QR codes and MousePath are used, the Crow 
connectivity mechanism sets priorities between the QR codes 
and MousePath. The QR code method is simpler and easier for 
end-users to handle than MousePath. In addition, the length of 
the SDP answers becomes shorter than that of the offers with the 
protocol data reduction scheme. Therefore, to make the most of 
the protocol data reduction, mouse-equipped devices should 
send the SDP offers through QR codes, and camera-equipped 
devices should send the SDP answers via MousePath. However, 
there are cases where the host and the peer are camera- and 
mouse-equipped devices, respectively, as shown in Fig. 1(b). 
Thus, the Crow API allows both hosts and peers to start the 
device discovery process. 

V. CROW IPC 

In this section, we describe the Crow IPC mechanism, which 
addresses JavaScript’s inability to establish direct IPC 

connections to other devices’ browser processes. We also 
describe how Crow IPC ensures functional consistency of cross-
device I/O-enabled web applications. Fig. 7 illustrates the 
overall view of Crow IPC. 

A. Proxy Interface 

A proxy interface is a JavaScript object that relays an IPC 
connection to the peer’s browser process. For Crow IPC, the 
Crow API exploits the peer’s runtime through a proxy interface. 
When a web application tries to use the peer’s I/O, the virtual 
API forwards the I/O-related web API function to the peer (the 
function-forwarding phase). Upon receiving the forwarded API 
function, the proxy interface calls the web API functions on 
behalf of the host. After the peer’s browser process returns I/O 
data to the proxy interface through the web APIs, the proxy 
interface forwards the I/O data to the host’s virtual API (the 
data-receiving phase). With the proxy interface, the host’s 
JavaScript runtime can communicate with the peer’s browser 
process. 

B. Ensuring Functional Consistency 

Crow IPC provides two mechanisms to ensure functional 
consistency: reference-free function forwarding and cross-
device data synchronization. 

Reference-free Function Forwarding. Reference-free 
function forwarding is used when a virtual API forwards the web 
API functions from the host to the peer. The key concept is to 
exchange data free of side effects between the host and the peer, 
while the functions that are likely to have side effects remain on 
each device. The web API functions typically have three kinds 
of parameters: callback functions for success, callback functions 
for error, and non-function values such as options and 
constraints. Except for the non-function values, the parameters 
are likely to cause side effects because JavaScript functions are 
not purely functional; they may alter variables or states outside 
the functions. Therefore, a virtual API should not forward 
callback functions to the peer. When a virtual API delegates web 
API functions to the peer, the virtual API sends only the name 
of the web API function and the option values. 

Cross-device Data Synchronization. After functions are 
forwarded, the host’s virtual APIs receive I/O data from the 
peer’s proxy interface through cross-device data 
synchronization. The overall concept is illustrated in Fig. 8. 
Crow IPC provides three kinds of data synchronization 
methods—one for each I/O data type discussed in Table I. For 
general data, the proxy interface returns I/O data to the virtual 
APIs through messages. Note that callback functions remain in 
the host during the function-forwarding phase. The virtual APIs 
maintain a map data structure to record which callback function 
is required for I/O data. Upon getting I/O data via messages, the 
virtual APIs look up the relevant callback function in the map 

 
Fig. 6. The flow of the Crow connectivity mechanism. 

 
Fig. 7. Crow IPC workflow. 

Host

Call

switchToVirtualAPI()

Call respondTo

VirtualAPIRequest()
Call Crow API functions

Send SDP Offer Wait for SDP Offer

Make SDP Answer

Send Diff(Answer, Offer)Wait for SDP Answer

Exchange SDPs for

a WebRTC data channel

Send SDP Offer
(Optional)

Exchange SDPs for

a WebRTC media channel

or another data channel

Wait for SDP Offer

Generate and send

SDP Answer
Wait for SDP Answer

Send/Receive data Send/Receive dataStart I/O sharing phase

Peer

Communication through the display-based data transmission schemes

Communication through the WebRTC data channel

Call Stack

C: Success or Error Callback Functions

O: Options

Queues

JavaScript Runtime

Renderer Process (Host)

JavaScript Runtime

Renderer Process (Peer)

O
C, O C, O

C
C

datadata

O
O data

Proxy

Interface

Browser Process (Peer)

Web

APIs

Crow

API
Virtual

APIs



and insert the callback function into the queues in a JavaScript 
runtime. The runtime then executes the callback function when 
the call stack of the runtime is empty. 

For periodic data, Crow IPC uses a cross-device shared 
buffer to share I/O data between the virtual APIs and the proxy 
interface. The synchronization process follows a producer–
consumer pattern. After calling the web APIs, the virtual APIs 
try to read I/O data from the shared buffer with the given 
frequency. If the buffer is empty, the virtual APIs’ reading tasks 
wait until the peer writes the data to the buffer; if not, the virtual 
APIs read the data and execute the callback function for the I/O. 
As the JavaScript is single-threaded, the reading tasks should not 
use busy waiting. Instead, the virtual APIs have queues in which 
the reading tasks are inserted and wait asynchronously. 
Meanwhile, the peer’s proxy interface tries to write I/O data to 
the buffer and has a queue for the writing tasks’ asynchronous 
waiting. 

For media streams such as video and audio, it is well-known 
that sharing encoded data is much more efficient than sharing 
raw data. Thus, we utilize standard WebRTC streaming to share 
the media streams. When a web application requires streams 
from the peer’s I/O, the Crow API establishes the WebRTC 
stream connection between the host and the peer. The callback 
function for the I/O waits in the host’s JavaScript runtime until 
the WebRTC stream comes from the peer, similar to the message 
method for general data. WebRTC streams video and audio at 
the best quality based on the Google congestion control 
algorithm [11]; thus, the Crow API efficiently provides 
streaming-based I/O sharing between multiple devices. 

VI. IMPLEMENTATION 

We implemented the Crow API as a JavaScript library for 
application developers to readily import into their applications. 
Additionally, we developed the Crow extension program, which 
automatically applies the Crow API to existing web 
applications. 

A. The Crow API Library 

Crow Connectivity Mechanism. We implemented the 
Crow connectivity mechanism as part of the Crow API. When 
web applications call switchToVirtualAPI() or respondTo
VirtualAPIRequest(), the Crow API displays GUIs to send and 
receive QR codes or MousePath. Open-source JavaScript codes 
were used to implement QR-based data transmission. For 
MousePath, we implemented the core as described in the paper 
[8] and employed open-source JavaScript codes for the required 
Reed-Solomon error correction. When web applications send 
data through MousePath, error correction codes are attached to 
the original data. The length of the error correction is set at 20% 
of the original data. As described in Section IV.B, the Crow API 
also allows the peers to start device discovery by calling the 

switchToVirtualAPI() function, and the hosts should respond to 
the requests with the respondToVirtualAPIRequest() function. 

Crow IPC. The Crow API library is compatible with web 
APIs for I/Os listed in Table I. We implemented the Crow API’s 
VirtualAPI objects according to the way each API works. As 
stated in Section II.B, some web APIs are invoked via global 
objects, while others are not. For global object–based web APIs, 
such as the MediaStream API and the Geolocation API, the 
VirtualAPI object has the same structure as the original global 
interfaces. For Sensor APIs, which do not have global objects 
but global constructors, VirtualAPI objects are generated by 
constructor calls. For keyboard events, the DOM waits for them 
without explicit function calls to turn the keyboard on or off. 
When users click or touch DOM nodes related to keyboard 
events, the web application obtains keyboard events from the 
peer if the virtual API for the keyboard is set to the current 
interface. For pointing devices, including the mouse, touch, 
stylus pen, etc., the library forwards pointing events, such as 
click/touch and drag/swipe, from the peer to the host with the 
relative position where the event occurs on the screen. Finally, 
the Crow API supports display by exploiting WebRTC’s screen 
sharing. There are no web API functions to turn the display on 
or off; thus, display sharing starts as soon as a web application 
calls the switchToVirtualAPI() function to set a virtual API 
object as the current interface. 

B. The Crow Extension Program 

Although the Crow API library helps application developers 
easily exploit cross-device I/O sharing functionality, existing 
web applications do not provide I/O sharing unless they are 
modified with the library. We implemented the Crow extension 
program, which provides cross-device I/O sharing functionality 
to existing web applications by automatically injecting the Crow 
API. The host runs the extension program in the browser. The 
peer runs a proxy web application that delivers the I/O data to 
the host. The Crow extension program provides two key 
functionalities: I/O selection and automatic code injection. The 
extension program presents a popup GUI that asks users which 
device to use for each I/O before running the web application. 
Then, the Crow extension program injects custom code into the 
web application during the loading process. We developed the 
Crow extension program as a Chrome extension; thus, the 
extension program works on Chromium-based browsers. The 
Chrome browser does not support the extension on Android, but 
the Kiwi browser does. As the WebExtension API is being 
standardized, this implementation is expected to work on all 
browsers soon. 

VII. EVALUATION 

We evaluated the Crow connectivity mechanism in terms of 
the amount of data required for the WebRTC connection. We 
also compared the I/O sharing functionality of the Crow API 
with other solutions in real environments and measured the 
performance with diverse I/O devices. 

A. Crow Connectivity Mechanism 

To evaluate the effectiveness of two optimization techniques 
(channel embedding and protocol data reduction), we measured 
the length of the data sent via the Crow API’s data transmission 
scheme while establishing a WebRTC video channel. For the 

 
Fig. 8. Cross-device data synchronization. 

Virtual

APIs
Proxy

Interface

Cross-device 

Shared Buffer
Read data with

given frequency
Write data with

given frequency

Cross-device Data Sync.

Send dataReceive data

Message

Media Stream



measurement, we used the desktop-to-tablet configuration, and 
the devices were connected to the same router. We set the 
desktop and the tablet as the host and the peer, respectively. 

Fig. 9 shows the measurement result. The baseline in the 
figure refers to the case where no optimization techniques are 
applied. For the baseline case, the length of the SDP offer and 
the answer are 7,849 and 5,718 characters, respectively. QR 
codes containing a large amount of data are difficult to recognize 
with cameras on general mobile devices due to the codes’ 
complexity. Thus, previous QR-based solutions for the 
serverless WebRTC connection [12], [13] use multiple QR 
codes to relay the SDPs. In the case of MousePath, it takes more 
than 450 s to send the 5,718-character SDP answer, which is too 
long for users to wait for. We calculated the time under the 
assumption that MousePath transmits 15 characters a second on 
60-Hz screens and requires error correction codes, 20% of the 
original data. As shown in the figure, the proposed optimization 
techniques efficiently reduce the length of SDPs. For the 
channel embedding, the length of the SDP offer and answer 
decrease to 723 and 702 characters, respectively. If the 
connectivity mechanism employs both techniques, the length of 
the SDP answer is reduced to 257 characters. In this case, the 
connectivity mechanism needs only one or two QR codes to 
transfer an SDP offer. It takes only 20 s to forward an SDP 
answer via MousePath, even taking into account the error 
correction codes. This results in a 95.5% reduction compared to 
the baseline. The Crow connectivity mechanism indeed provides 
a practical solution. 

B. I/O Sharing Functionality 

Cross-I/O Coverage. To confirm that the Crow API can 
provide cross-device I/O sharing, we evaluated whether it 
worked well on popular web applications and compared the 
Crow API’s I/O coverage with that of other solutions. For the 
comparison, we selected various cross-device I/O sharing 
solutions, including Android-based native solutions for general 
I/O sharing, such as Rio [1], Personal Mobile Cloud (PMC) [2], 
Mobile Plus (M+) [3], M2 [4], and Tap [14]. 

The results of the cross-I/O coverage are summarized in 
Table IV. The evaluation was conducted on a host-peer 
configuration, where each solution best supported cross-device 
I/O sharing. For the Crow API, we used a Windows 10-based 
laptop for the host and the Android 11-based Pixel 2 XL for the 
peer. Chrome version 92 was used for the evaluation. The “I/O” 
column in the table lists the types of I/Os tested in this 
experiment. We evaluated the functionality of the Crow API 
with the sample web applications listed in the “Web app” 
column. For motion and light sensors, we used demo web 
applications we wrote for the test because we were unable to find 
popular web applications that use Sensor APIs. 

As shown in the table, the Crow API supported the most 
diverse types of I/Os. AirPlay [15] and Chromecast [16] were 
developed for sharing audio and video, DroidCam [17] for 
sharing cameras, and WO Mic [18] for sharing microphones. 
These solutions support limited I/O as they were developed for 
sharing specific I/Os. However, the Android-based I/O sharing 
solutions show wider I/O coverage than the I/O-specific 
solutions. Android-based solutions aim to provide general I/O 
sharing by modifying operating systems or providing an SDK 
for developing cross-device applications. Only M2 and Tap 
native applications support as many I/Os as the Crow API. This 
result supports the generality of the Crow API in providing 
cross-device I/O sharing even as a web application. 

Heterogeneity. We evaluated the functionality of the Crow 
API on diverse platforms and compared the results with those 
for other solutions. For the evaluation, we selected five 
platforms (Android, iOS, Windows, macOS, and Linux) and 
used the platforms as hosts and peers. For the devices, we used 
a Pixel 2 XL smartphone for Android, an iPad Pro tablet for iOS, 
an i5 laptop computer for Windows, an iMac desktop for 
macOS, and an i7 desktop computer for Linux. For all cases 
except the Android host and the iOS host, Chrome version 92 
with the Crow extension program was used for the evaluation. 
For the Android host, we used the Kiwi browser, a modified 
version of Chrome that supports extensions on Android. For the 
iOS host, we modified web applications with the Crow API 
because no browsers support the extension on iOS. For the iOS 
host and iOS peer, the evaluation was performed on the Safari 
browser, which is the main browser for iOS. Note that the Safari 
browser is planned to support extension programs built with 
standard WebExtension API [19]; therefore, we expect the 
proposed Crow extension program will work on iOS in the near 
future. 

Table V summarizes the results, showing that the Crow API 
outperformed other solutions in supporting cross-device I/O 

TABLE IV.  CROSS-DEVICE I/O SHARING OF THE CROW API AND PREVIOUS SOLUTIONS. 

I/O Web app Crow Air 

Play 

Chrome 

cast 

Droid 

Cam 

WO 

Mic 

Rio PMC M+ M2 Tap 

Camera Zoom, WebEx, Google Duo, Google Meet, Talky, Whereby ✓   ✓  ✓ ✓ ✓ ✓ ✓ 

Microphone Zoom, WebEx, Google Duo, Google Meet, Talky, Whereby ✓    ✓ ✓   ✓ ✓ 

GPS Google Maps, OpenStreetMap, Bing Maps, Waze, Airbnb ✓      ✓  ✓ ✓ 

Motion and light sensors (Demo web applications) ✓     ✓a ✓a ✓a ✓ ✓ 

Keyboard Google Docs, Wikipedia ✓        ✓ ✓ 

Pointer (Mouse, touch. stylus) Google Keep, Chrome Canvas, Sketch.io, Slither.io ✓        ✓b ✓b 

Speaker YouTube Music, Soundcloud ✓ ✓ ✓   ✓ ✓  ✓ ✓ 

Display YouTube, Netflix, Twitch, TED ✓ ✓ ✓      ✓ ✓ 
a Supports only accelerometers among various sensors. b Supports drag or swipe events, but cannot share the movement of mouse cursors. 

 
Fig. 9. Message length for establishing a WebRTC video channel between 
two devices. 



sharing on diverse platforms. Previous solutions are inherently 
limited to specific platforms because the solutions are for native 
applications. AirPlay and Chromecast work only for the Apple 
(iOS/macOS) and Google (Android) platforms, respectively, for 
sharing display and audio. DroidCam and WO Mic were 
developed for a specific host-peer configuration: desktop host 
and mobile peer. Rio, PMC, M+, M2, and Tap are Android-
based solutions. M2 and Tap are designed to work on iOS but 
do not work as a general solution on other platforms. Compared 
to the previous solutions, the Crow API provides fully 
heterogeneous cross-device I/O sharing due to its meta-platform 
characteristics. 

There were a few cases in which the Crow API could not 
provide cross-device I/O sharing for specific I/Os, primarily 
because of the browsers’ limitations. For the iOS peer, the Safari 
browser and other browsers, including Chrome for iOS, do not 
support Sensor APIs; thus, cross-device I/O sharing cannot be 
utilized for sensors. Meanwhile, the iOS host can access the 
other device’s sensors through the Crow API, although iOS does 
not support Sensor APIs. This is because web API functions are 
executed not on the host but on the peer where browsers support 
Sensor APIs unless the peer is not iOS. As the Sensor APIs are 
being standardized, we hope that the Safari browser will support 
Sensor APIs so that web applications will be able to provide 
cross-device I/O sharing functionality even on an iOS peer. 

C. Performance 

I/O Sharing Overhead. We evaluated the performance of 
the Crow API in providing cross-device I/O sharing. We first 
assessed the overhead of the cross-device function call by 
measuring the time from when the web API functions were 
called until the first I/O data arrived. In this evaluation, the host 
was the Windows 10-based laptop with an Intel i5-8265U CPU, 
and the peer was the Android 10-based Pixel 2 XL smartphone. 
The time measurement was performed in the 50-Mbps Wi-Fi 
environment, which is a typical environment for users to 
experience cross-device I/O sharing with their devices. 

Fig. 10 shows the measurement results of the Crow API 
overhead in providing cross-device I/O sharing functionality for 
each I/O. Each bar in the figure represents the average time of 
100 measurements. The overhead was almost constant, with an 
average of 86.3 ms, except for the camera. This overhead is 
small enough to barely affect the web application’s 
functionalities and the overall user experience. We further 
analyzed the cause of the overhead and found that it was mostly 

caused by the round-trip time (RTT) of the WebRTC data 
channel. The measured RTT was about 81 ms, similar to results 
found in previous research [20]. The actual processing time for 
the Crow API code was at most 5 ms, which has a trivial effect 
on the performance. For the camera, the overhead was about 111 
ms which is relatively larger than that of the other I/O. This 
additional overhead comes from establishing the WebRTC 
stream connection, which is necessary for the Crow API to share 
stream-based I/O between devices. Meanwhile, the overhead for 
the microphone, another stream-based I/O, is similar to that of 
the other I/O because the Crow API establishes the WebRTC 
stream connection while waiting for the peer’s data which come 
through the WebRTC data channel. Establishing the WebRTC 
stream connection for audio took less time than the WebRTC 
data channel’s RTT between the host and the peer. 

Other I/Os (such as the keyboard, speaker, and display) are 
not included in the figure because there are no comparison 
baselines: there are no web API functions to turn these I/Os on. 
For these I/Os, the performance of the Crow API depends 
heavily on the WebRTC’s performance. Because the WebRTC 
data channel is currently the only option for exchanging data 
between web applications without a third-party server, this 
overhead is unavoidable for the Crow API. Therefore, the 
overall performance of the proposed API depends on the 
implementation quality of WebRTC’s data channel. 

Camera Sharing. We specifically conducted a performance 
evaluation of camera sharing because video-based applications 
are commonplace. Normally, cross-device camera sharing uses 
a non-trivial amount of resources; thus, previous solutions, 
especially Android-based solutions [1]–[3], showed significant 
performance degradation for sharing cameras. The existing 
solutions share raw camera data with the memory-sharing 
approach; in contrast, the Crow API uses compressed data with 
WebRTC. In this evaluation, we used the same host–peer 
configuration as previously. In addition, we used another peer, 
the Galaxy S9 Plus, which provides a better computation 
capability than the Pixel 2 XL. We set the peer’s camera 
resolution to 360p, 480p, 720p, and 1080p, and the camera’s 
frames per second (FPS) to 30 FPS. We used the VP8 and VP9 
codecs, which are default codecs used by WebRTC. The VP9 
codec is known to compress videos more efficiently than the 
VP8 codec but demands more CPU. 

Fig. 11 shows the bitrate traces of the shared videos 
measured up to 80 s after cross-device camera sharing starts. As 
shown in the figure, the bitrates stabilize after 40 s and converge 
to specific values. A previous study on WebRTC video 
streaming [11] reported fixed 2.5-Mbps bitrates at 720p or 
higher resolutions on desktop computers. The study also showed 
that mobile devices were not able to stream 2.5-Mbps videos due 
to the devices’ low performance. However, we experimentally 

TABLE V.  CROSS-DEVICE I/O SHARING ON DIVERSE PLATFORMS. 

Platform Crow Air 

Play 

Chrome 

cast 

Droid 

Cam 

WO 

Mic 

Rio PMC M+ M2 Tap 

Android host ✓  ✓   ✓ ✓ ✓ ✓ ✓ 

iOS host ✓a ✓        ✓ 

Windows host ✓  ✓ ✓ ✓      

macOS host ✓          

Linux host ✓   ✓  ✓     

Android peer ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

iOS peer ✓b ✓  ✓     ✓ ✓ 

Windows peer ✓          

macOS host ✓ ✓         

Linux host ✓     ✓     
a The Crow extension does not work, but the Crow API works. 

 b The Crow API cannot use Sensor APIs due to the lack of browser support. 

 
Fig. 10. Overhead for calling the peer’s web API functions with the Crow API. 



found that current mobile devices transmit 2.5-Mbps videos 
without any problems because of the performance improvement 
in newer mobile devices. We confirmed that the output 
resolutions are not degraded for almost all cases. Only in the 
case of the Pixel 2 XL with the VP9 codec, the 1080p resolution 
decreased to 540p because the Pixel 2 XL does not have enough 
performance to support the VP9 codec at a resolution of 1080p. 
We further evaluated FPS for each case. Fig. 12 shows the 
results. We found that the FPS traces converge to 30 for almost 
all cases, aside from the case of the Pixel 2 XL with the 1080 
resolution and the VP9 codec. 

VIII. RELATED WORK 

Previous researchers have tried to exploit the potential of 
using multiple devices for improved user experiences. In 
particular, various techniques have been proposed for 
distributing GUIs or sharing I/Os on multiple devices. Many 
practical cross-device solutions have been developed especially 
for remote desktop environments, such as Virtual Network 
Computing (VNC) [21], TeamViewer [22], AnyDesk [23], and 
Chrome Remote Desktop [24]. The tools exploit a specific I/O 
set—display, mouse, keyboard, and speaker—that is necessary 
for remote desktop processing. The tools mandate the use of 
display sharing, even if a user wishes to utilize only a remote 
keyboard or other simple I/Os. Clearly, these tools are limited in 
providing general-purpose cross-device I/O sharing. 

In addition, various solutions for cross-device GUI 
distribution to multiple devices have been proposed. 
Chromecast [16] allows users to cast video- and audio-related 
GUIs of applications to other devices. CollaDroid [25] and 
UIWear [26] help developers modify their Android applications, 
whose GUIs are originally designed for single-device 
environments, to cross-device GUI versions. Panelrama [27], 
Liquid.js [28], and AdaM [29] help developers implement web 
applications that provide cross-device GUI functionality. 
Recently, work has been conducted to provide cross-device GUI 
functions without reauthoring by developers. FLUID, FLUID-
XP, and PRUID [30]–[32] enable users to distribute Android 
applications’ GUIs to multiple devices. XDBrowser [33], [34] 
provides a cross-device GUI solution for web applications 
without reauthoring. Cross-device GUI distribution provides 
interesting use cases, but the technique focuses on fine-grained 
display sharing, which is different from the goal of the Crow 
API, which is general I/O sharing. 

To provide cross-device I/O sharing functionality, many 
efforts have been made especially for native applications. The 
solutions fall into three categories. First, applications have been 
developed for sharing specific I/Os. IP Webcam [35] and 
DroidCam [17] allow users to employ a smartphone’s camera on 
Windows desktop computers, and WO Mic [18] allows users to 
use smartphones’ microphones. These applications lack 
generality in providing cross-device I/O sharing. Second, the 

OS-level approach has been proposed for cross-device I/O 
sharing. Rio [1] implements cross-device I/O sharing through a 
split-stack kernel architecture that intercepts Linux kernel 
operations. Personal Mobile Cloud [2], Mobile Plus [3], and 
Jong et al. [36] introduced solutions that work at the Android 
framework layer. M2 [4] achieved cross-device I/O sharing 
between iOS and Android applications by leveraging I/O 
abstractions. These OS-specific system-level solutions are 
unable to run on diverse platforms, leading to the platform-
dependency problem. Finally, researchers have proposed APIs 
or SDKs that help developers adopt cross-device I/O sharing 
functionality. Tap [14] employs a cross-device I/O API for 
Android and iOS applications. However, native applications 
developed with the API should run on specific platforms such as 
Android or iOS; thus, this API approach still cannot solve the 
platform-dependency issue. 

Overall, previous solutions for cross-device I/O sharing have 
limited I/O support or platform-dependency problems. In 
contrast, the Crow API provides cross-device I/O sharing 
running on diverse platforms by exploiting web applications’ 
meta-platform characteristics. In fact, there was a solution for 
cross-device I/O sharing on web applications, called Gibraltar 
[37]. Gibraltar exposed I/O devices to web pages via an HTTP-
enabled device server that interacts with I/O devices on behalf 
of web pages. Gibraltar was a pre-WebRTC system; thus, it 
required the host and peers to run device servers and know each 
server’s IP address. On the other hand, Crow API is compatible 
with modern web standards, such as WebRTC and web APIs, 
and provides I/O sharing functionalities without any additional 
server programs. 

IX. CONCLUSION 

To the best of our knowledge, the Crow API is the first 
attempt to provide general-purpose cross-device I/O sharing in 
web applications. Based on the meta-platform characteristics of 
web applications, the Crow API addresses the platform-
dependency issue of native application-based solutions for 
cross-device I/O sharing. Recently, new web APIs have been 
proposed and standardized for various hardware, such as the 
Bluetooth API, NFC API, and Human Interface Device (HID) 
API. The Crow API is designed to be extensible to these new 
APIs. We hope that it becomes a standard for web APIs and 
opens up a new direction for general cross-device I/O sharing 
for web applications. 
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